Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2011, 76, 859-917
https://doi.org/10.1135/cccc2011078
Published online 2011-06-29 13:25:52

Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots

Filip Teplý

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

Crossref Cited-by Linking

  • Zhang Jing, She Ping, Xu Qiang, Tian Fengkun, Rao Heng, Qin Jun‐Sheng, Bonin Julien, Robert Marc: Efficient Visible‐Light‐Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst. ChemSusChem 2024. <https://doi.org/10.1002/cssc.202301892>
  • Li Hao‐Yuan, Niu Xiaoying, Yang Xiu‐Long: Photoinduced Generation of Active Intermediates from Unmodified 1,3‐Dicarbonyl Compounds for Organic Transformations. Eur J Org Chem 2024, 27. <https://doi.org/10.1002/ejoc.202400102>
  • Yuan Yurong, Faure Clara, Berthelot Mathieu, Belmont Philippe, Brachet Etienne: Harnessing the Potential of Electron Donor–Acceptor Complexes and N-Centered Radicals: Expanding the Frontiers of Isoquinoline Derivative Synthesis. J. Org. Chem. 2024, 89, 3538. <https://doi.org/10.1021/acs.joc.4c00086>
  • Morozkov Gleb V., Abel Anton S., Lyssenko Konstantin A., Roznyatovsky Vitaly A., Averin Alexei D., Beletskaya Irina P., Bessmertnykh-Lemeune Alla: Ruthenium(ii) complexes with phosphonate-substituted phenanthroline ligands as reusable photoredox catalysts. Dalton Trans. 2024, 53, 535. <https://doi.org/10.1039/D3DT02936K>
  • Liu Shuai, Huang Kai-Yue, Liu Sha-Sha, He Yang, Zheng Yan, Li Lai-Cai: Substitution effects on the mechanism of Light-Induced 2,5-Diaryltetrazole-Naphthoquinone 1,3-Dipolar Cycloaddition: A theoretical study. Computational and Theoretical Chemistry 2023, 1222, 114060. <https://doi.org/10.1016/j.comptc.2023.114060>
  • Li Niang-Xiu, Chen Yu-Mei, Xu Quan-Qing, Mu Wei-Hua: Photocatalytic reduction of CO2 to CO using nickel(II)-bipyridine complexes with different substituent groups as catalysts. Journal of CO2 Utilization 2023, 68, 102385. <https://doi.org/10.1016/j.jcou.2022.102385>
  • Akita Munetaka, Ceroni Paola, Stephenson Corey R. J., Masson Géraldine: Progress in Photocatalysis for Organic Chemistry. J. Org. Chem. 2023, 88, 6281. <https://doi.org/10.1021/acs.joc.3c00812>
  • Meyer Franc, Halasyamani P. Shiv, Masson Géraldine: Advances in Organic and Inorganic Photoredox Catalysis. ACS Org. Inorg. Au 2023, 3, 1. <https://doi.org/10.1021/acsorginorgau.2c00062>
  • Rai Pratibha, Singh Jaya, Rai Pragati, Maurya Priyanka, Singh Jagdamba: Recent Development in Visible-Light Assisted, Photocatalyst Free Carbon-Heteroatom Bond Formation: review. Polycyclic Aromatic Compounds 2023, 1. <https://doi.org/10.1080/10406638.2023.2263609>
  • Patel Geetika, Patel Ashok Raj, Banerjee Subhash: Sustainability of Visible Light-Driven Organic Transformations - A Review. COC 2023, 27, 166. <https://doi.org/10.2174/1385272827666221229110656>
  • Ahmad Muhammad Siddique, Lin Po-Han, Zhang Qing, Zeng Bing, Wang Qifeng, Meguellati Kamel: Visible Light Induced C-H/N-H and C-X Bonds Reactions. Reactions 2023, 4, 189. <https://doi.org/10.3390/reactions4010012>
  • Saikia B. Shriya, Deb Mohit L., Baruah Pranjal K.: Green synthesis of 1,3-oxazines by visible light-promoted catalyst-free C–H activation/cyclization of tertiary amines. Environ Chem Lett 2022, 20, 109. <https://doi.org/10.1007/s10311-021-01308-6>
  • Castellanos-Soriano Jorge, Álvarez-Gutiérrez Daniel, Jiménez M. Consuelo, Pérez-Ruiz Raúl: Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes. Photochem Photobiol Sci 2022, 21, 1175. <https://doi.org/10.1007/s43630-022-00203-5>
  • Rana Priksha, Singh Nishi, Majumdar Poulomi, Prakash Singh Surya: Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coordination Chemistry Reviews 2022, 470, 214698. <https://doi.org/10.1016/j.ccr.2022.214698>
  • Pitre Spencer P., Overman Larry E.: Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chem. Rev. 2022, 122, 1717. <https://doi.org/10.1021/acs.chemrev.1c00247>
  • Holmberg-Douglas Natalie, Nicewicz David A.: Photoredox-Catalyzed C–H Functionalization Reactions. Chem. Rev. 2022, 122, 1925. <https://doi.org/10.1021/acs.chemrev.1c00311>
  • Gupta Anamika, Iqbal Safia, Roohi, Hussain Mohd. Kamil, Zaheer Mohd. Rehan, Shankar Krapa: Visible Light-Promoted Green and Sustainable Approach for One-Pot Synthesis of 4,4’-(Arylmethylene)bis(1H-pyrazol-5-ols), In Vitro Anticancer Activity, and Molecular Docking with Covid-19 Mpro. ACS Omega 2022, 7, 34583. <https://doi.org/10.1021/acsomega.2c04506>
  • Tsuchiya Naoki, Sheppard Tom D., Nishikata Takashi: Tertiary Alkylative Suzuki–Miyaura Couplings. Synthesis 2022, 54, 2340. <https://doi.org/10.1055/a-1732-4597>
  • Karmakar Sukhen, Silamkoti Arundutt, Meanwell Nicholas A., Mathur Arvind, Gupta Arun Kumar: Utilization of C(sp3)‐Carboxylic Acids and Their Redox‐Active Esters in Decarboxylative Carbon−Carbon Bond Formation. Adv Synth Catal 2021, 363, 3693. <https://doi.org/10.1002/adsc.202100314>
  • Wang Youjia, Duan Ruochen, Wu Yanhui, Li Xulian, Deng Chao: Metal‐Free Synthesis of Diarylmethanes through Visible‐Light Induced Radical Reactions with Arylamines. ChemistrySelect 2021, 6, 6097. <https://doi.org/10.1002/slct.202101388>
  • Ren Shujian, Fu Jiahui, Cheng Dongping, Li Xiaonian, Xu Xiaoliang: A facile access for multisubstituted trifluoromethyl olefins by visible light catalysis. Tetrahedron Letters 2021, 66, 152829. <https://doi.org/10.1016/j.tetlet.2021.152829>
  • Ren Shujian, Cheng Dongping, Li Xiaonian, Xu Xiaoliang: Mild oxidation of benzyl alcohols to benzyl aldehydes or ketones catalyzed by visible light. Tetrahedron Letters 2021, 76, 153234. <https://doi.org/10.1016/j.tetlet.2021.153234>
  • Das Biswanath, Rahaman Ahibur, Shatskiy Andrey, Verho Oscar, Kärkäs Markus D., Åkermark Björn: The Impact of Ligand Carboxylates on Electrocatalyzed Water Oxidation. Acc. Chem. Res. 2021, 54, 3326. <https://doi.org/10.1021/acs.accounts.1c00298>
  • Tian Ya-Ming, Guo Xiao-Ning, Braunschweig Holger, Radius Udo, Marder Todd B.: Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chem. Rev. 2021, 121, 3561. <https://doi.org/10.1021/acs.chemrev.0c01236>
  • Kos Martin, Rodríguez Rafael, Storch Jan, Sýkora Jan, Caytan Elsa, Cordier Marie, Císařová Ivana, Vanthuyne Nicolas, Williams J. A. Gareth, Žádný Jaroslav, Církva Vladimír, Crassous Jeanne: Enantioenriched Ruthenium-Tris-Bipyridine Complexes Bearing One Helical Bipyridine Ligand: Access to Fused Multihelicenic Systems and Chiroptical Redox Switches. Inorg. Chem. 2021, 60, 11838. <https://doi.org/10.1021/acs.inorgchem.1c01379>
  • Liu Hong-Kun, Lei Yi-Fei, Tian Peng-Ju, Wang Hui, Zhao Xin, Li Zhan-Ting, Zhang Dan-Wei: [Fe(bpy)3]2+-based porous organic polymers with boosted photocatalytic activity for recyclable organic transformations. J. Mater. Chem. A 2021, 9, 6361. <https://doi.org/10.1039/D0TA12267J>
  • Kim Se Hyun, An Ju Hyeon, Lee Jun Hee: Highly chemoselective deoxygenation of N-heterocyclic N-oxides under transition metal-free conditions. Org. Biomol. Chem. 2021, 19, 3735. <https://doi.org/10.1039/D1OB00260K>
  • Dutta Arup, Rahman Noimur, Kumar John Elisa, Rabha Jintu, Phukan Tridip, Nongkhlaw Rishanlang: Catalyst-free UV365-assisted synthesis of pyran annulated heterocyclic scaffolds and evaluation of their antibacterial activities. Synthetic Communications 2021, 51, 263. <https://doi.org/10.1080/00397911.2020.1825741>
  • Zenkov I. S., Yakushev A. A., Abel A. S., Averin A. D., Bessmertnykh-Lemeune A. G., Beletskaya I. P.: Photocatalytic Activity of Ruthenium(II) Complex with 1,10-Phenanthroline-3,8-dicarboxylic Acid in Aerobic Oxidation Reactions. Russ J Org Chem 2021, 57, 1398. <https://doi.org/10.1134/S1070428021090025>
  • Zhao Yizhou, Wang Lanning, Song Tinglu, Mudryi Alexander, Li Yujing, Chen Qi: Recent Progress in Designing Halide-Perovskite-Based System for the Photocatalytic Applications. Front. Chem. 2021, 8. <https://doi.org/10.3389/fchem.2020.613174>
  • Zhang Yajing, Wang Qian, Yan Zongsheng, Ma Donglai, Zheng Yuguang: Visible-light-mediated copper photocatalysis for organic syntheses. Beilstein J. Org. Chem. 2021, 17, 2520. <https://doi.org/10.3762/bjoc.17.169>
  • Zhu Da‐Liang, Wu Qi, Li Hai‐Yan, Li Hong‐Xi, Lang Jian‐Ping: Hantzsch Ester as a Visible‐Light Photoredox Catalyst for Transition‐Metal‐Free Coupling of Arylhalides and Arylsulfinates. Chemistry A European J 2020, 26, 3484. <https://doi.org/10.1002/chem.201905281>
  • Zidan Montserrat, Morris Avery O., McCallum Terry, Barriault Louis: The Alkylation and Reduction of Heteroarenes with Alcohols Using Photoredox Catalyzed Hydrogen Atom Transfer via Chlorine Atom Generation. Eur J Org Chem 2020, 2020, 1453. <https://doi.org/10.1002/ejoc.201900786>
  • Gualandi Andrea, Marchini Marianna, Mengozzi Luca, Kidanu Hagos Tesfay, Franc Antoine, Ceroni Paola, Cozzi Pier Giorgio: Aluminum(III) Salen Complexes as Active Photoredox Catalysts. Eur J Org Chem 2020, 2020, 1486. <https://doi.org/10.1002/ejoc.201901086>
  • Barthelemy Anne‐Laure, Dagousset Guillaume, Magnier Emmanuel: Metal‐Free Visible‐Light‐Mediated Hydrotrifluoromethylation of Unactivated Alkenes and Alkynes in Continuous Flow. Eur J Org Chem 2020, 2020, 1429. <https://doi.org/10.1002/ejoc.201901252>
  • Fuks Elina, Huber Laura, Schinkel Thea, Trapp Oliver: Investigation of Straightforward, Photoinduced Alkylations of Electron‐Rich Heterocompounds with Electron‐Deficient Alkyl Bromides in the Sole Presence of 2,6‐Lutidine. Eur J Org Chem 2020, 2020, 6192. <https://doi.org/10.1002/ejoc.202001003>
  • Qiao Shanshan, Feng Chao, Guo Yuan, Chen Tingxiang, Akram Naeem, Zhang Yi, Wang Wei, Yue Fan, Wang Jide: CdS nanoparticles modified Ni@NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system. Chemical Engineering Journal 2020, 395, 125068. <https://doi.org/10.1016/j.cej.2020.125068>
  • Qiao Shanshan, Guo Jia, Wang Di, Zhang Liugen, Hassan Afaq, Chen Tingxiang, Feng Chao, Zhang Yi, Wang Jide: Core-shell cobalt particles Co@CoO loaded on nitrogen-doped graphene for photocatalytic water-splitting. International Journal of Hydrogen Energy 2020, 45, 1629. <https://doi.org/10.1016/j.ijhydene.2019.10.157>
  • Sun Wencheng, Teng Qiaoling, Cheng Dongping, Li Xiaonian, Xu Xiaoliang: The hydrodebromination of 1,1-dibromoalkenes via visible light catalysis. Tetrahedron Letters 2020, 61, 151410. <https://doi.org/10.1016/j.tetlet.2019.151410>
  • Pagire Santosh K., Föll Thomas, Reiser Oliver: Shining Visible Light on Vinyl Halides: Expanding the Horizons of Photocatalysis. Acc. Chem. Res. 2020, 53, 782. <https://doi.org/10.1021/acs.accounts.9b00615>
  • Karbakhsh Ravari Alireza, Pineda-Galvan Yuliana, Huynh Alexander, Ezhov Roman, Pushkar Yulia: Facile Light-Induced Transformation of [RuII(bpy)2(bpyNO)]2+ to [RuII(bpy)3]2+. Inorg. Chem. 2020, 59, 13880. <https://doi.org/10.1021/acs.inorgchem.0c01446>
  • Pagire Santosh K., Kumagai Naoya, Shibasaki Masakatsu: The Different Faces of [Ru(bpy)3Cl2] and fac[Ir(ppy)3] Photocatalysts: Redox Potential Controlled Synthesis of Sulfonylated Fluorenes and Pyrroloindoles from Unactivated Olefins and Sulfonyl Chlorides. Org. Lett. 2020, 22, 7853. <https://doi.org/10.1021/acs.orglett.0c02760>
  • Gao Zhong-Zheng, Xu Yan-Yan, Wang Ze-Kun, Wang Hui, Zhang Dan-Wei, Li Zhan-Ting: Porous [Ru(bpy)3]2+-Cored Metallosupramolecular Polymers: Preparation and Recyclable Photocatalysis for the Formation of Amides and 2-Diazo-2-phenylacetates. ACS Appl. Polym. Mater. 2020, 2, 4885. <https://doi.org/10.1021/acsapm.0c00800>
  • Liu Yanhong, Yang Yiying, Zhu Rongxiu, Zhang Dongju: Computational Clarification of Synergetic RuII/CuI-Metallaphotoredox Catalysis in C(sp3)–N Cross-Coupling Reactions of Alkyl Redox-Active Esters with Anilines. ACS Catal. 2020, 10, 5030. <https://doi.org/10.1021/acscatal.0c00060>
  • Cheng Wan-Min, Shang Rui: Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catal. 2020, 10, 9170. <https://doi.org/10.1021/acscatal.0c01979>
  • Luo Yi, Xu Zi-Yue, Wang Hui, Sun Xing-Wen, Li Zhan-Ting, Zhang Dan-Wei: Porous Ru(bpy)32+-Linked Polymers for Recyclable Photocatalysis of Enantioselective Alkylation of Aldehydes. ACS Macro Lett. 2020, 9, 90. <https://doi.org/10.1021/acsmacrolett.9b00872>
  • Gualandi Andrea, Calogero Francesco, Martinelli Ada, Quintavalla Arianna, Marchini Marianna, Ceroni Paola, Lombardo Marco, Cozzi Pier Giorgio: A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Trans. 2020, 49, 14497. <https://doi.org/10.1039/D0DT02587A>
  • Waki Minoru, Shirai Soichi, Yamanaka Ken-ichi, Maegawa Yoshifumi, Inagaki Shinji: Heterogeneous water oxidation photocatalysis based on periodic mesoporous organosilica immobilizing a tris(2,2′-bipyridine)ruthenium sensitizer. RSC Adv. 2020, 10, 13960. <https://doi.org/10.1039/D0RA00895H>
  • Yang Xue, Zhang Suyuan, Li Peixian, Gao Shuiying, Cao Rong: Visible-light-driven photocatalytic selective organic oxidation reactions. J. Mater. Chem. A 2020, 8, 20897. <https://doi.org/10.1039/D0TA05485B>
  • Jain A., Ameta C.: Novel Way to Harness Solar Energy: Photo-Redox Catalysis in Organic Synthesis. Kinet Catal 2020, 61, 242. <https://doi.org/10.1134/S002315842002007X>
  • Ho Yee Ann, Paffenholz Eva, Kim Hyun Jin, Orgis Benjamin, Rueping Magnus, Fabry David C.: Catalytic Wacker‐type Oxidations Using Visible Light Photoredox Catalysis. ChemCatChem 2019, 11, 1889. <https://doi.org/10.1002/cctc.201900271>
  • Loibl Antonia, Weber Manuela, Lutz Martin, Müller Christian: ReI Complexes of Pyridylphosphinines and 2,2′‐Bipyridine Derivatives: A Comparison. Eur J Inorg Chem 2019, 2019, 1575. <https://doi.org/10.1002/ejic.201801234>
  • Lekkala Ravindar, Lekkala Revathi, Moku Balakrishna, Rakesh K. P., Qin Hua‐Li: Recent Developments in Radical‐Mediated Transformations of Organohalides. Eur J Org Chem 2019, 2019, 2769. <https://doi.org/10.1002/ejoc.201900098>
  • Wu Yi-Peng, Yan Meng, Gao Zhong-Zheng, Hou Jun-Li, Wang Hui, Zhang Dan-Wei, Zhang Junliang, Li Zhan-Ting: Ruthenium(II)-cored supramolecular organic framework-mediated recyclable visible light photoreduction of azides to amines and cascade formation of lactams. Chinese Chemical Letters 2019, 30, 1383. <https://doi.org/10.1016/j.cclet.2019.03.056>
  • Luis Ena T., Iranmanesh Hasti, Beves Jonathon E.: Photosubstitution reactions in ruthenium(II) trisdiimine complexes: Implications for photoredox catalysis. Polyhedron 2019, 160, 1. <https://doi.org/10.1016/j.poly.2018.11.057>
  • Weng Jian-Quan, Xu Wen-Xiu, Dai Xiao-Qiang, Zhang Jun-Hui, Liu Xing-Hai: Alkylation reactions of benzothiazoles with N,N-dimethylamides catalyzed by the two-component system under visible light. Tetrahedron Letters 2019, 60, 390. <https://doi.org/10.1016/j.tetlet.2018.12.064>
  • Ye Hongqiang, Zhao He, Ren Shujian, Ye Hongfeng, Cheng Dongping, Li Xiaonian, Xu Xiaoliang: The coupling of alkylboronic acids and esters with Baylis–Hillman derivatives by Lewis base/photoredox dual catalysis. Tetrahedron Letters 2019, 60, 1302. <https://doi.org/10.1016/j.tetlet.2019.04.015>
  • Ren Xiang, Lu Zhan: Visible light promoted difunctionalization reactions of alkynes. Chinese Journal of Catalysis 2019, 40, 1003. <https://doi.org/10.1016/S1872-2067(19)63278-X>
  • Prasanna Ramanathan, Guha Somraj, Sekar Govindasamy: Proton-Coupled Electron Transfer: Transition-Metal-Free Selective Reduction of Chalcones and Alkynes Using Xanthate/Formic Acid. Org. Lett. 2019, 21, 2650. <https://doi.org/10.1021/acs.orglett.9b00635>
  • Lyu Xue-Li, Huang Shi-Sheng, Song Hong-Jian, Liu Yu-Xiu, Wang Qing-Min: Visible-Light-Induced Copper-Catalyzed Decarboxylative Coupling of Redox-Active Esters with N-Heteroarenes. Org. Lett. 2019, 21, 5728. <https://doi.org/10.1021/acs.orglett.9b02105>
  • Chang Chao-Wan, Cheng Ming-Chuan, Lee Gene-Hsiang, Peng Shie-Ming: Facile synthesis of 1,5-disubstituted tetrazoles by reacting a ruthenium acetylide complex with trimethylsilyl azide. Dalton Trans. 2019, 48, 11732. <https://doi.org/10.1039/C9DT02363A>
  • Teplý Filip: Visible-light photoredox catalysis with [Ru(bpy)3]2+: General principles and the twentieth-century roots. Physical Sciences Reviews 2019, 0. <https://doi.org/10.1515/psr-2017-0171>
  • Zeitler Kirsten, Neumann Matthias: Synergistic visible light photoredox catalysis. Physical Sciences Reviews 2019, 0. <https://doi.org/10.1515/psr-2017-0173>
  • Rai Vijai K., Verma Fooleswar, Mahata Suhasini, Bhardiya Smita R., Singh Manorama, Rai Ankita: Metal Doped-C3N4/Fe2O4: Efficient and Versatile Heterogenous Catalysts for Organic Transformations. COC 2019, 23, 1284. <https://doi.org/10.2174/1385272823666190709113758>
  • Hatakeda Miho, Toohara Souta, Nakashima Takuya, Sakurai Shinichi, Kuroiwa Keita: Helical-Ribbon and Tape Formation of Lipid Packaged [Ru(bpy)3]2+ Complexes in Organic Media. IJMS 2019, 20, 3298. <https://doi.org/10.3390/ijms20133298>
  • Zhu Jie, Yang Wen‐Chao, Wang Xiao‐dong, Wu Lei: Photoredox Catalysis in C–S Bond Construction: Recent Progress in Photo‐Catalyzed Formation of Sulfones and Sulfoxides. Adv Synth Catal 2018, 360, 386. <https://doi.org/10.1002/adsc.201701194>
  • Tripathi Shubhangi, Kapoor Ritu, Yadav Lal Dhar S.: Visible Light Activated Radical Denitrative Benzoylation of β‐Nitrostyrenes: A Photocatalytic Approach to Chalcones. Adv Synth Catal 2018, 360, 1407. <https://doi.org/10.1002/adsc.201701559>
  • Revathi Lekkala, Ravindar Lekkala, Fang Wan‐Yin, Rakesh K. P., Qin Hua‐Li: Visible Light‐Induced C−H Bond Functionalization: A Critical Review. Adv Synth Catal 2018, 360, 4652. <https://doi.org/10.1002/adsc.201800736>
  • Dmitriev Igor A., Supranovich Vyacheslav I., Levin Vitalij V., Struchkova Marina I., Dilman Alexander D.: Visible Light Promoted 2‐Bromotetrafluoroethylation of Nitrones. Adv Synth Catal 2018, 360, 3788. <https://doi.org/10.1002/adsc.201800802>
  • Marzo Leyre, Pagire Santosh K., Reiser Oliver, König Burkhard: Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese?. Angewandte Chemie 2018, 130, 10188. <https://doi.org/10.1002/ange.201709766>
  • Barthelemy Anne‐Laure, Tuccio Béatrice, Magnier Emmanuel, Dagousset Guillaume: Alkoxyl Radicals Generated under Photoredox Catalysis: A Strategy for anti‐Markovnikov Alkoxylation Reactions. Angewandte Chemie 2018, 130, 13986. <https://doi.org/10.1002/ange.201806522>
  • Marzo Leyre, Pagire Santosh K., Reiser Oliver, König Burkhard: Visible‐Light Photocatalysis: Does It Make a Difference in Organic Synthesis?. Angew Chem Int Ed 2018, 57, 10034. <https://doi.org/10.1002/anie.201709766>
  • Barthelemy Anne‐Laure, Tuccio Béatrice, Magnier Emmanuel, Dagousset Guillaume: Alkoxyl Radicals Generated under Photoredox Catalysis: A Strategy for anti‐Markovnikov Alkoxylation Reactions. Angew Chem Int Ed 2018, 57, 13790. <https://doi.org/10.1002/anie.201806522>
  • Hou Hong, Zhu Shaoqun, Atodiresei Iuliana, Rueping Magnus: Asymmetric Organocatalysis and Photoredox Catalysis for the α‐Functionalization of Tetrahydroisoquinolines. Eur J Org Chem 2018, 2018, 1277. <https://doi.org/10.1002/ejoc.201800117>
  • McGee Philippe, Brousseau Julie, Barriault Louis: Development of New Gold (I)‐Catalyzed Carbocyclizations and their Applications in the Synthesis of Natural Products. Israel Journal of Chemistry 2018, 58, 511. <https://doi.org/10.1002/ijch.201700054>
  • López-Calixto Carmen G., Liras Marta, de la Peña O’Shea Victor A., Pérez-Ruiz Raúl: Synchronized biphotonic process triggering C C coupling catalytic reactions. Applied Catalysis B: Environmental 2018, 237, 18. <https://doi.org/10.1016/j.apcatb.2018.05.062>
  • Michelin Clément, Hoffmann Norbert: Photocatalysis applied to organic synthesis – A green chemistry approach. Current Opinion in Green and Sustainable Chemistry 2018, 10, 40. <https://doi.org/10.1016/j.cogsc.2018.02.009>
  • Ye Hongqiang, Ye Qianwen, Cheng Dongping, Li Xiaonian, Xu Xiaoliang: The coupling of potassium organotrifluoroborates with Baylis–Hillman derivatives via visible-light photoredox catalysis. Tetrahedron Letters 2018, 59, 2046. <https://doi.org/10.1016/j.tetlet.2018.04.035>
  • Hong Dachao, Tsukakoshi Yuto, Kotani Hiroaki, Ishizuka Tomoya, Ohkubo Kei, Shiota Yoshihito, Yoshizawa Kazunari, Fukuzumi Shunichi, Kojima Takahiko: Mechanistic Insights into Homogeneous Electrocatalytic and Photocatalytic Hydrogen Evolution Catalyzed by High-Spin Ni(II) Complexes with S2N2-Type Tetradentate Ligands. Inorg. Chem. 2018, 57, 7180. <https://doi.org/10.1021/acs.inorgchem.8b00881>
  • Pagire Santosh K., Hossain Asik, Reiser Oliver: Temperature Controlled Selective C–S or C–C Bond Formation: Photocatalytic Sulfonylation versus Arylation of Unactivated Heterocycles Utilizing Aryl Sulfonyl Chlorides. Org. Lett. 2018, 20, 648. <https://doi.org/10.1021/acs.orglett.7b03790>
  • Li Run, Byun Jeehye, Huang Wei, Ayed Cyrine, Wang Lei, Zhang Kai A. I.: Poly(benzothiadiazoles) and Their Derivatives as Heterogeneous Photocatalysts for Visible-Light-Driven Chemical Transformations. ACS Catal. 2018, 8, 4735. <https://doi.org/10.1021/acscatal.8b00407>
  • Tripathi Shubhangi, Yadav Lal Dhar S.: Visible-light-enabled denitrative carboxylation of β-nitrostyrenes: a direct photocatalytic approach to cinnamic acids. New J. Chem. 2018, 42, 3765. <https://doi.org/10.1039/C7NJ04578F>
  • Verma Fooleswar, Sahu Anjumala, Singh Puneet K., Rai Ankita, Singh Manorama, Rai Vijai K.: Visible-light driven regioselective synthesis of 1H-tetrazoles from aldehydes through isocyanide-based [3 + 2] cycloaddition. Green Chem. 2018, 20, 3783. <https://doi.org/10.1039/C8GC01321G>
  • Zhang Xu, Rakesh K. P., Ravindar L., Qin Hua-Li: Visible-light initiated aerobic oxidations: a critical review. Green Chem. 2018, 20, 4790. <https://doi.org/10.1039/C8GC02382D>
  • Nongthombam Geetmani Singh, Kharmawlong George Kupar, Kumar John Elisa, Nongkhlaw Rishanlang: UV365 light promoted catalyst-free synthesis of pyrimido[4,5-b]quinoline-2,4-diones in aqueous-glycerol medium. New J. Chem. 2018, 42, 9436. <https://doi.org/10.1039/C8NJ01459K>
  • Kibriya Golam, Bagdi Avik K., Hajra Alakananda: Visible light induced tetramethylethylenediamine assisted formylation of imidazopyridines. Org. Biomol. Chem. 2018, 16, 3473. <https://doi.org/10.1039/C8OB00532J>
  • Erdmann E., Villinger A., König B., Seidel W. W.: 1,10-Phenanthroline-dithiine iridium and ruthenium complexes: synthesis, characterization and photocatalytic dihydrogen evolution. Photochem Photobiol Sci 2018, 17, 1056. <https://doi.org/10.1039/c8pp00068a>
  • Khan Raysa, Boonseng Sarote, Kemmitt Paul D., Felix Robert, Coles Simon J., Tizzard Graham J., Williams Gareth, Simmonds Olivia, Harvey Jessica‐Lily, Atack John, Cox Hazel, Spencer John: Combining Sanford Arylations on Benzodiazepines with the Nuisance Effect. Adv Synth Catal 2017, 359, 3261. <https://doi.org/10.1002/adsc.201700626>
  • Daniel Marion, Dagousset Guillaume, Diter Patrick, Klein Pierre‐André, Tuccio Béatrice, Goncalves Anne‐Marie, Masson Géraldine, Magnier Emmanuel: Fluorinated Sulfilimino Iminiums: Efficient and Versatile Sources of Perfluoroalkyl Radicals under Photoredox Catalysis. Angewandte Chemie 2017, 129, 4055. <https://doi.org/10.1002/ange.201700290>
  • Pagire Santosh K., Kreitmeier Peter, Reiser Oliver: Bildung von α‐Ketoradikalen aus Vinylbromiden und molekularem Sauerstoff mit sichtbarem Licht: Synthese von Indenonen und Dihydroindeno[1,2‐c]chromenen. Angewandte Chemie 2017, 129, 11068. <https://doi.org/10.1002/ange.201702953>
  • Daniel Marion, Dagousset Guillaume, Diter Patrick, Klein Pierre‐André, Tuccio Béatrice, Goncalves Anne‐Marie, Masson Géraldine, Magnier Emmanuel: Fluorinated Sulfilimino Iminiums: Efficient and Versatile Sources of Perfluoroalkyl Radicals under Photoredox Catalysis. Angew Chem Int Ed 2017, 56, 3997. <https://doi.org/10.1002/anie.201700290>
  • Pagire Santosh K., Kreitmeier Peter, Reiser Oliver: Visible‐Light‐Promoted Generation of α‐Ketoradicals from Vinyl‐bromides and Molecular Oxygen: Synthesis of Indenones and Dihydroindeno[1,2‐c]chromenes. Angew Chem Int Ed 2017, 56, 10928. <https://doi.org/10.1002/anie.201702953>
  • Pettersson Fredrik, Bergonzini Giulia, Cassani Carlo, Wallentin Carl‐Johan: Redox‐Neutral Dual Functionalization of Electron‐Deficient Alkenes. Chemistry A European J 2017, 23, 7444. <https://doi.org/10.1002/chem.201701589>
  • Hoffmann Norbert: Proton‐Coupled Electron Transfer in Photoredox Catalytic Reactions. Eur J Org Chem 2017, 2017, 1982. <https://doi.org/10.1002/ejoc.201601445>
  • Santacroce Veronica, Duboc Raphael, Malacria Max, Maestri Giovanni, Masson Geraldine: Visible‐Light, Photoredox‐Mediated Oxidative Tandem Nitroso‐Diels–Alder Reaction of Arylhydroxylamines with Conjugated Dienes. Eur J Org Chem 2017, 2017, 2095. <https://doi.org/10.1002/ejoc.201601492>
  • Meyer Andreas Uwe, Lau Vincent Wing‐hei, König Burkhard, Lotsch Bettina V.: Photocatalytic Oxidation of Sulfinates to Vinyl Sulfones with Cyanamide‐Functionalised Carbon Nitride. Eur J Org Chem 2017, 2017, 2179. <https://doi.org/10.1002/ejoc.201601637>
  • Boubertakh Oualid, Goddard Jean‐Philippe: Construction and Functionalization of Heteroarenes by Use of Photoredox Catalysis. Eur J Org Chem 2017, 2017, 2072. <https://doi.org/10.1002/ejoc.201601653>
  • Eisenhofer Anna, Hioe Johnny, Gschwind Ruth M., König Burkhard: Photocatalytic Phenol–Arene C–C and C–O Cross‐Dehydrogenative Coupling. Eur J Org Chem 2017, 2017, 2194. <https://doi.org/10.1002/ejoc.201700211>
  • Sázelová Petra, Koval Dušan, Severa Lukáš, Teplý Filip, Kašička Václav: Chiral analysis of α‐diimine Ru(II) and Fe(II) complexes by capillary electrophoresis using sulfated cyclodextrins as stereoselectors. Electrophoresis 2017, 38, 1913. <https://doi.org/10.1002/elps.201700077>
  • Mishra Anu, Rai Pratibha, Srivastava Madhulika, Tripathi Bhartendu Pati, Yadav Snehlata, Singh Jaya, Singh Jagdamba: A Peerless Aproach: Organophotoredox/Cu(I) Catalyzed, Regioselective, Visible Light Facilitated, Click Synthesis of 1,2,3-Triazoles via Azide–Alkyne [3 + 2] Cycloaddition. Catal Lett 2017, 147, 2600. <https://doi.org/10.1007/s10562-017-2156-8>
  • Swavey Shawn, Ireland David, Irwin Emily, Counts Jacob: Synthesis, spectroscopic, and electrochemical studies of bis-ruthenium(II) polypyridyl complexes bridged by dipyrromethenes. Inorganica Chimica Acta 2017, 454, 71. <https://doi.org/10.1016/j.ica.2016.03.008>
  • Borpatra Paran J., Deb Mohit L., Baruah Pranjal K.: Visible light-promoted metal-free intramolecular cross dehydrogenative coupling approach to 1,3-oxazines. Tetrahedron Letters 2017, 58, 4006. <https://doi.org/10.1016/j.tetlet.2017.09.018>
  • Shang Jinting, Tang Hanying, Ji Hongwei, Ma Wanhong, Chen Chuncheng, Zhao Jincai: Synthesis, characterization, and activity of a covalently anchored heterogeneous perylene diimide photocatalyst. Chinese Journal of Catalysis 2017, 38, 2094. <https://doi.org/10.1016/S1872-2067(17)62960-7>
  • Kumamoto Kota, Tsuchibashi Kenta, Pramata Azzah Dyah, Yuasa Masayoshi, Shimanoe Kengo, Kida Tetsuya: Visible Light-Driven Photoenergy Storage and Photocatalysis Using Polyoxometallates Coupled with a Ru Complex. J. Phys. Chem. C 2017, 121, 13515. <https://doi.org/10.1021/acs.jpcc.7b02484>
  • Zhao Quan-Qing, Chen Jun, Yan Dong-Mei, Chen Jia-Rong, Xiao Wen-Jing: Photocatalytic Hydrazonyl Radical-Mediated Radical Cyclization/Allylation Cascade: Synthesis of Dihydropyrazoles and Tetrahydropyridazines. Org. Lett. 2017, 19, 3620. <https://doi.org/10.1021/acs.orglett.7b01609>
  • Kärkäs Markus D.: Photochemical Generation of Nitrogen-Centered Amidyl, Hydrazonyl, and Imidyl Radicals: Methodology Developments and Catalytic Applications. ACS Catal. 2017, 7, 4999. <https://doi.org/10.1021/acscatal.7b01385>
  • Yang Bo, Lu Zhan: Visible-Light-Promoted Metal-Free Aerobic Hydroxyazidation of Alkenes. ACS Catal. 2017, 7, 8362. <https://doi.org/10.1021/acscatal.7b02892>
  • Hong Dachao, Tsukakoshi Yuto, Kotani Hiroaki, Ishizuka Tomoya, Kojima Takahiko: Visible-Light-Driven Photocatalytic CO2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production. J. Am. Chem. Soc. 2017, 139, 6538. <https://doi.org/10.1021/jacs.7b01956>
  • Pagire Santosh K., Hossain Asik, Traub Lukas, Kerres Sabine, Reiser Oliver: Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes. Chem. Commun. 2017, 53, 12072. <https://doi.org/10.1039/C7CC06710K>
  • Marin Mireia, Miranda Miguel A., Marin M. Luisa: A comprehensive mechanistic study on the visible-light photocatalytic reductive dehalogenation of haloaromatics mediated by Ru(bpy)3Cl2. Catal. Sci. Technol. 2017, 7, 4852. <https://doi.org/10.1039/C7CY01231D>
  • Li Yuewen, Lu Yiye, Mao Runyu, Li Zhiming, Wu Jie: A photoinduced reaction of perfluoroalkyl halides with 1,3-diarylprop-2-yn-1-ones catalyzed by DABSO. Org. Chem. Front. 2017, 4, 1745. <https://doi.org/10.1039/C7QO00279C>
  • Srivastava Vishal, Singh Praveen P.: Eosin Y catalysed photoredox synthesis: a review. RSC Adv. 2017, 7, 31377. <https://doi.org/10.1039/C7RA05444K>
  • Cai Xiaohui, Liu Hanwen, Zhi Lihua, Wen Huang, Yu Ailing, Li Lianhua, Chen Fengjuan, Wang Baodui: A g-C3N4/rGO nanocomposite as a highly efficient metal-free photocatalyst for direct C–H arylation under visible light irradiation. RSC Adv. 2017, 7, 46132. <https://doi.org/10.1039/C7RA07462J>
  • Li Yang, Liu Bang, Song Ren‐Jie, Wang Qiu‐An, Li Jin‐Heng: Visible Light‐Initiated C(sp3)Br/C(sp3)H Functionalization of α‐Carbonyl Alkyl Bromides through Hydride Radical Shift. Adv Synth Catal 2016, 358, 1219. <https://doi.org/10.1002/adsc.201501134>
  • Zhang Heng, Huang Xueliang: Ligand‐Free Heck Reactions of Aryl Iodides: Significant Acceleration of the Rate through Visible Light Irradiation at Ambient Temperature. Adv Synth Catal 2016, 358, 3736. <https://doi.org/10.1002/adsc.201600704>
  • Suzuki Itaru, Esumi Naoto, Yasuda Makoto: Photoredox α‐Allylation of α‐Halocarbonyls with Allylboron Compounds Accelerated by Fluoride Salts under Visible Light Irradiation. Asian J Org Chem 2016, 5, 179. <https://doi.org/10.1002/ajoc.201500475>
  • Wang Chuanyong, Qin Jie, Shen Xiaodong, Riedel Radostan, Harms Klaus, Meggers Eric: Asymmetric Radical–Radical Cross‐Coupling through Visible‐Light‐Activated Iridium Catalysis. Angewandte Chemie 2016, 128, 695. <https://doi.org/10.1002/ange.201509524>
  • Fava Eleonora, Millet Anthony, Nakajima Masaki, Loescher Sebastian, Rueping Magnus: Reduktive Umpolung von Carbonylderivaten mittels Photoredoxkatalyse mit sichtbarem Licht: ein direkter Zugang zu vicinalen Diaminen und Aminoalkoholen über α‐Aminoradikale und Ketylradikale. Angewandte Chemie 2016, 128, 6888. <https://doi.org/10.1002/ange.201511235>
  • Hopkinson Matthew N., Gómez‐Suárez Adrián, Teders Michael, Sahoo Basudev, Glorius Frank: Schnelles Entdecken photokatalytischer Reaktionen durch mechanismusbasiertes Screening. Angewandte Chemie 2016, 128, 4434. <https://doi.org/10.1002/ange.201600995>
  • Wang Chuanyong, Qin Jie, Shen Xiaodong, Riedel Radostan, Harms Klaus, Meggers Eric: Asymmetric Radical–Radical Cross‐Coupling through Visible‐Light‐Activated Iridium Catalysis. Angew Chem Int Ed 2016, 55, 685. <https://doi.org/10.1002/anie.201509524>
  • Fava Eleonora, Millet Anthony, Nakajima Masaki, Loescher Sebastian, Rueping Magnus: Reductive Umpolung of Carbonyl Derivatives with Visible‐Light Photoredox Catalysis: Direct Access to Vicinal Diamines and Amino Alcohols via α‐Amino Radicals and Ketyl Radicals. Angew Chem Int Ed 2016, 55, 6776. <https://doi.org/10.1002/anie.201511235>
  • Hopkinson Matthew N., Gómez‐Suárez Adrián, Teders Michael, Sahoo Basudev, Glorius Frank: Accelerated Discovery in Photocatalysis using a Mechanism‐Based Screening Method. Angew Chem Int Ed 2016, 55, 4361. <https://doi.org/10.1002/anie.201600995>
  • Bergonzini Giulia, Cassani Carlo, Lorimer‐Olsson Haldor, Hörberg Johanna, Wallentin Carl‐Johan: Visible‐Light‐Mediated Photocatalytic Difunctionalization of Olefins by Radical Acylarylation and Tandem Acylation/Semipinacol Rearrangement. Chemistry A European J 2016, 22, 3292. <https://doi.org/10.1002/chem.201504985>
  • Honeker Roman, Garza‐Sanchez R. Aleyda, Hopkinson Matthew N., Glorius Frank: Visible‐Light‐Promoted Trifluoromethylthiolation of Styrenes by Dual Photoredox/Halide Catalysis. Chemistry A European J 2016, 22, 4395. <https://doi.org/10.1002/chem.201600190>
  • Meyer Andreas Uwe, Straková Karolína, Slanina Tomáš, König Burkhard: Eosin Y (EY) Photoredox‐Catalyzed Sulfonylation of Alkenes: Scope and Mechanism. Chemistry A European J 2016, 22, 8694. <https://doi.org/10.1002/chem.201601000>
  • Fan Lulu, Jia Jiaqi, Hou Hong, Lefebvre Quentin, Rueping Magnus: Decarboxylative Aminomethylation of Aryl‐ and Vinylsulfonates through Combined Nickel‐ and Photoredox‐Catalyzed Cross‐Coupling. Chemistry A European J 2016, 22, 16437. <https://doi.org/10.1002/chem.201604452>
  • Christmann Julien, Ibrahim Ahmad, Charlot Vincent, Croutxé‐Barghorn Céline, Ley Christian, Allonas Xavier: Elucidation of the Key Role of [Ru(bpy)3]2+ in Photocatalyzed RAFT Polymerization. ChemPhysChem 2016, 17, 2309. <https://doi.org/10.1002/cphc.201600034>
  • Das Santu, Lai Dipti, Mallick Apabrita, Roy Soumyajit: Photo Redox Mediated Inexpensive One-Pot Synthesis of 1,4-Diphenyl Substituted Butane-1,4-Dione from Styrene using Polyoxometalate as a Catalyst. ChemistrySelect 2016, 1, 691. <https://doi.org/10.1002/slct.201500052>
  • Feng Zhujia, Zeng Tingting, Xuan Jun, Liu Yunhang, Lu Liangqiu, Xiao Wen-Jing: C–H allylation of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with iodide catalysis. Sci. China Chem. 2016, 59, 171. <https://doi.org/10.1007/s11426-015-5548-x>
  • Gao Shuanhu, Qiu Yuanyou: Advances of radical and photo reactions in natural products synthesis. Sci. China Chem. 2016, 59, 1093. <https://doi.org/10.1007/s11426-016-0032-y>
  • Vincent Guillaume, Cheli Saloua, Martinez Mallorquin Rocio, Abramovitch Adi, Beauvière Sophie, Gomez Catherine, Brebion Franck, Marek Ilan, Malacria Max, Goddard Jean Philippe, Fensterbank Louis: Oxidation of bis-sulfinyl carbanions as the pivot of ionic/radical tandem reactions. Comptes Rendus Chimie 2016, 19, 403. <https://doi.org/10.1016/j.crci.2015.11.012>
  • Hering Thea, König Burkhard: Photocatalytic activation of N-chloro compounds for the chlorination of arenes. Tetrahedron 2016, 72, 7821. <https://doi.org/10.1016/j.tet.2016.06.028>
  • Erbland Guillaume, Ruch Jonas, Goddard Jean-Philippe: Photochemical functionalization of diazines: metal-free vinylation and phosphonylation. Tetrahedron 2016, 72, 7826. <https://doi.org/10.1016/j.tet.2016.07.069>
  • Yadav Vinod K., Srivastava Vishnu P., Yadav Lal Dhar S.: Visible-light-promoted cyclodesulfurization of phenolic thioureas: an organophotoredox catalytic approach to 2-aminobenzoxazoles. Tetrahedron Letters 2016, 57, 155. <https://doi.org/10.1016/j.tetlet.2015.11.089>
  • Hou Tianyuan, Lu Ping, Li Pixu: Visible-light-mediated benzylic sp3 C–H bond functionalization to C–Br or C–N bond. Tetrahedron Letters 2016, 57, 2273. <https://doi.org/10.1016/j.tetlet.2016.04.036>
  • Zhang Ying-Peng, Feng Xiao-Long, Yang Yun-Shang, Cao Bi-Xia: Metal-free, C–H arylation of indole and its derivatives with aryl diazonium salts by visible-light photoredox catalysis. Tetrahedron Letters 2016, 57, 2298. <https://doi.org/10.1016/j.tetlet.2016.04.051>
  • Yadav Vinod K., Srivastava Vishnu P., Yadav Lal Dhar S.: Visible light induced azidation of aldehydic C–H with carbon tetrabromide and sodium azide. Tetrahedron Letters 2016, 57, 2502. <https://doi.org/10.1016/j.tetlet.2016.04.098>
  • Morris Scott A., Wang Jiang, Zheng Nan: The Prowess of Photogenerated Amine Radical Cations in Cascade Reactions: From Carbocycles to Heterocycles. Acc. Chem. Res. 2016, 49, 1957. <https://doi.org/10.1021/acs.accounts.6b00263>
  • Majek Michal, Jacobi von Wangelin Axel: Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. Acc. Chem. Res. 2016, 49, 2316. <https://doi.org/10.1021/acs.accounts.6b00293>
  • Reiser Oliver: Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes. Acc. Chem. Res. 2016, 49, 1990. <https://doi.org/10.1021/acs.accounts.6b00296>
  • Poplata Saner, Tröster Andreas, Zou You-Quan, Bach Thorsten: Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions. Chem. Rev. 2016, 116, 9748. <https://doi.org/10.1021/acs.chemrev.5b00723>
  • Kärkäs Markus D., Porco John A., Stephenson Corey R. J.: Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis. Chem. Rev. 2016, 116, 9683. <https://doi.org/10.1021/acs.chemrev.5b00760>
  • Skubi Kazimer L., Blum Travis R., Yoon Tehshik P.: Dual Catalysis Strategies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035. <https://doi.org/10.1021/acs.chemrev.6b00018>
  • Afewerki Samson, Córdova Armando: Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem. Rev. 2016, 116, 13512. <https://doi.org/10.1021/acs.chemrev.6b00226>
  • Fan Xiu-Wei, Lei Tao, Zhou Chao, Meng Qing-Yuan, Chen Bin, Tung Chen-Ho, Wu Li-Zhu: Radical Addition of Hydrazones by α-Bromo Ketones To Prepare 1,3,5-Trisubstituted Pyrazoles via Visible Light Catalysis. J. Org. Chem. 2016, 81, 7127. <https://doi.org/10.1021/acs.joc.6b00992>
  • Yang Bo, Lu Zhan: Visible-Light-Promoted Oxidative [4 + 2] Cycloadditions of Aryl Silyl Enol Ethers. J. Org. Chem. 2016, 81, 7288. <https://doi.org/10.1021/acs.joc.6b01016>
  • Xia Zhonghua, Khaled Omar, Mouriès-Mansuy Virginie, Ollivier Cyril, Fensterbank Louis: Dual Photoredox/Gold Catalysis Arylative Cyclization of o-Alkynylphenols with Aryldiazonium Salts: A Flexible Synthesis of Benzofurans. J. Org. Chem. 2016, 81, 7182. <https://doi.org/10.1021/acs.joc.6b01060>
  • Dong Wuheng, Hu Bei, Gao Xiaoshuang, Li Yuyuan, Xie Xiaomin, Zhang Zhaoguo: Visible-Light-Induced Photocatalytic Aerobic Oxidation/Povarov Cyclization Reaction: Synthesis of Substituted Quinoline-Fused Lactones. J. Org. Chem. 2016, 81, 8770. <https://doi.org/10.1021/acs.joc.6b01253>
  • Gao Xiao-Fei, Du Jing-Jing, Liu Zheng, Guo Jun: Visible-Light-Induced Specific Desulfurization of Cysteinyl Peptide and Glycopeptide in Aqueous Solution. Org. Lett. 2016, 18, 1166. <https://doi.org/10.1021/acs.orglett.6b00292>
  • Lebée Clément, Languet Morgan, Allain Clémence, Masson Géraldine: α-Carbamoylsulfides as N-Carbamoylimine Precursors in the Visible Light Photoredox-Catalyzed Synthesis of α,α-Disubstituted Amines. Org. Lett. 2016, 18, 1478. <https://doi.org/10.1021/acs.orglett.6b00442>
  • Pagire Santosh K., Paria Suva, Reiser Oliver: Synthesis of β-Hydroxysulfones from Sulfonyl Chlorides and Alkenes Utilizing Visible Light Photocatalytic Sequences. Org. Lett. 2016, 18, 2106. <https://doi.org/10.1021/acs.orglett.6b00734>
  • Cannillo Alexandre, Schwantje Travis R., Bégin Maxime, Barabé Francis, Barriault Louis: Gold-Catalyzed Photoredox C(sp2) Cyclization: Formal Synthesis of (±)-Triptolide. Org. Lett. 2016, 18, 2592. <https://doi.org/10.1021/acs.orglett.6b00968>
  • Jarrige Lucie, Carboni Aude, Dagousset Guillaume, Levitre Guillaume, Magnier Emmanuel, Masson Géraldine: Photoredox-Catalyzed Three-Component Tandem Process: An Assembly of Complex Trifluoromethylated Phthalans and Isoindolines. Org. Lett. 2016, 18, 2906. <https://doi.org/10.1021/acs.orglett.6b01257>
  • Esumi Naoto, Suzuki Kensuke, Nishimoto Yoshihiro, Yasuda Makoto: Synthesis of 1,4-Dicarbonyl Compounds from Silyl Enol Ethers and Bromocarbonyls, Catalyzed by an Organic Dye under Visible-Light Irradiation with Perfect Selectivity for the Halide Moiety over the Carbonyl Group. Org. Lett. 2016, 18, 5704. <https://doi.org/10.1021/acs.orglett.6b02869>
  • Jin Yunhe, Yang Haijun, Fu Hua: Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of N-(Acetoxy)phthalimides. Org. Lett. 2016, 18, 6400. <https://doi.org/10.1021/acs.orglett.6b03300>
  • Luo Jian, Zhang Jian: Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp3)–C(sp2) Cross-Coupling. ACS Catal. 2016, 6, 873. <https://doi.org/10.1021/acscatal.5b02204>
  • Bartling Hanna, Eisenhofer Anna, König Burkhard, Gschwind Ruth M.: The Photocatalyzed Aza-Henry Reaction of N-Aryltetrahydroisoquinolines: Comprehensive Mechanism, H•- versus H+-Abstraction, and Background Reactions. J. Am. Chem. Soc. 2016, 138, 11860. <https://doi.org/10.1021/jacs.6b06658>
  • McTiernan C. D., Morin M., McCallum T., Scaiano J. C., Barriault L.: Polynuclear gold(i) complexes in photoredox catalysis: understanding their reactivity through characterization and kinetic analysis. Catal. Sci. Technol. 2016, 6, 201. <https://doi.org/10.1039/C5CY01259G>
  • Chen Jun, Cen Jie, Xu Xiaoliang, Li Xiaonian: The application of heterogeneous visible light photocatalysts in organic synthesis. Catal. Sci. Technol. 2016, 6, 349. <https://doi.org/10.1039/C5CY01289A>
  • Rackl Daniel, Kreitmeier Peter, Reiser Oliver: Synthesis of a polyisobutylene-tagged fac-Ir(ppy)3 complex and its application as recyclable visible-light photocatalyst in a continuous flow process. Green Chem. 2016, 18, 214. <https://doi.org/10.1039/C5GC01792K>
  • Gui Yong-Yuan, Sun Liang, Lu Zhi-Peng, Yu Da-Gang: Photoredox sheds new light on nickel catalysis: from carbon–carbon to carbon–heteroatom bond formation. Org. Chem. Front. 2016, 3, 522. <https://doi.org/10.1039/C5QO00437C>
  • Tripathi Shubhangi, Singh Sachchida N., Yadav Lal Dhar S.: Visible light photocatalysis with CBr4: a highly selective aerobic photooxidation of methylarenes to aldehydes. RSC Adv. 2016, 6, 14547. <https://doi.org/10.1039/C5RA26623H>
  • Tlahuext-Aca Adrian, Hopkinson Matthew N., Sahoo Basudev, Glorius Frank: Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 2016, 7, 89. <https://doi.org/10.1039/C5SC02583D>
  • Ma Jiajia, Harms Klaus, Meggers Eric: Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols. Chem. Commun. 2016, 52, 10183. <https://doi.org/10.1039/C6CC04397F>
  • Meyer Andreas Uwe, Berger Anna Lucia, König Burkhard: Metal-free C–H sulfonamidation of pyrroles by visible light photoredox catalysis. Chem. Commun. 2016, 52, 10918. <https://doi.org/10.1039/C6CC06111G>
  • Kärkäs Markus D., Åkermark Björn: Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Trans. 2016, 45, 14421. <https://doi.org/10.1039/C6DT00809G>
  • Fava Eleonora, Nakajima Masaki, Tabak Martin B., Rueping Magnus: Tin-free visible light photoredox catalysed cyclisation of enamides as a mild procedure for the synthesis of γ-lactams. Green Chem. 2016, 18, 4531. <https://doi.org/10.1039/C6GC01099G>
  • Oelgemöller Michael, Hoffmann Norbert: Studies in organic and physical photochemistry – an interdisciplinary approach. Org. Biomol. Chem. 2016, 14, 7392. <https://doi.org/10.1039/C6OB00842A>
  • Lévêque Christophe, Chenneberg Ludwig, Corcé Vincent, Goddard Jean-Philippe, Ollivier Cyril, Fensterbank Louis: Primary alkyl bis-catecholato silicates in dual photoredox/nickel catalysis: aryl- and heteroaryl-alkyl cross coupling reactions. Org. Chem. Front. 2016, 3, 462. <https://doi.org/10.1039/C6QO00014B>
  • An Yuanyuan, Li Yuewen, Wu Jie: A general route to fluorinated 3,3-disubstituted 2-oxindoles via a photoinduced radical cyclization of N-arylacrylamides under catalyst-free conditions. Org. Chem. Front. 2016, 3, 570. <https://doi.org/10.1039/C6QO00055J>
  • Li Yuewen, Zheng Danqing, Li Zhenhua, Wu Jie: Generation of N-aminosulfonamides via a photo-induced fixation of sulfur dioxide into aryl/alkyl halides. Org. Chem. Front. 2016, 3, 574. <https://doi.org/10.1039/C6QO00060F>
  • Brahmachari Goutam: Design for carbon–carbon bond forming reactions under ambient conditions. RSC Adv. 2016, 6, 64676. <https://doi.org/10.1039/C6RA14399G>
  • Xuan Jun, Zeng Ting‐Ting, Feng Zhu‐Jia, Deng Qiao‐Hui, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing, Alper Howard: Redox‐Neutral α‐Allylation of Amines by Combining Palladium Catalysis and Visible‐Light Photoredox Catalysis. Angewandte Chemie 2015, 127, 1645. <https://doi.org/10.1002/ange.201409999>
  • Hollister Kyle A., Conner Elizabeth S., Spell Mark L., Deveaux Kristina, Maneval Léa, Beal Michael W., Ragains Justin R.: Remote Hydroxylation through Radical Translocation and Polar Crossover. Angewandte Chemie 2015, 127, 7948. <https://doi.org/10.1002/ange.201500880>
  • Iali Wissam, Lanoe Pierre‐Henri, Torelli Stéphane, Jouvenot Damien, Loiseau Frédérique, Lebrun Colette, Hamelin Olivier, Ménage Stéphane: A Ruthenium(II)–Copper(II) Dyad for the Photocatalytic Oxygenation of Organic Substrates Mediated by Dioxygen Activation. Angewandte Chemie 2015, 127, 8535. <https://doi.org/10.1002/ange.201501180>
  • Nakajima Masaki, Fava Eleonora, Loescher Sebastian, Jiang Zhen, Rueping Magnus: Eine additivarme photoredoxkatalysierte reduktive Kupplung von Aldehyden, Ketonen und Iminen mit sichtbarem Licht. Angewandte Chemie 2015, 127, 8952. <https://doi.org/10.1002/ange.201501556>
  • Sahoo Basudev, Li Jun‐Long, Glorius Frank: Photoredoxkatalysierte Semipinakol‐Umlagerung mit sichtbarem Licht: Trifluormethylierung/Ringerweiterung über einen radikalisch‐polaren Mechanismus. Angewandte Chemie 2015, 127, 11740. <https://doi.org/10.1002/ange.201503210>
  • Zhou Quan‐Quan, Guo Wei, Ding Wei, Wu Xiong, Chen Xi, Lu Liang‐Qiu, Xiao Wen‐Jing: Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visible‐Light Photoredox Catalysis. Angewandte Chemie 2015, 127, 11348. <https://doi.org/10.1002/ange.201504559>
  • Corcé Vincent, Chamoreau Lise‐Marie, Derat Etienne, Goddard Jean‐Philippe, Ollivier Cyril, Fensterbank Louis: Silicates as Latent Alkyl Radical Precursors: Visible‐Light Photocatalytic Oxidation of Hypervalent Bis‐Catecholato Silicon Compounds. Angewandte Chemie 2015, 127, 11576. <https://doi.org/10.1002/ange.201504963>
  • Xuan Jun, Zhang Zhao‐Guo, Xiao Wen‐Jing: Durch sichtbares Licht induzierte decarboxylierende Funktionalisierung von Carbonsäuren und ihren Derivaten. Angewandte Chemie 2015, 127, 15854. <https://doi.org/10.1002/ange.201505731>
  • Tan Yuqi, Yuan Wei, Gong Lei, Meggers Eric: Aerobic Asymmetric Dehydrogenative Cross‐Coupling between Two CH Groups Catalyzed by a Chiral‐at‐Metal Rhodium Complex. Angewandte Chemie 2015, 127, 13237. <https://doi.org/10.1002/ange.201506273>
  • Bergonzini Giulia, Cassani Carlo, Wallentin Carl‐Johan: Acyl Radicals from Aromatic Carboxylic Acids by Means of Visible‐Light Photoredox Catalysis. Angewandte Chemie 2015, 127, 14272. <https://doi.org/10.1002/ange.201506432>
  • Sahoo Basudev, Hopkinson Matthew N., Glorius Frank: Durch sichtbares Licht vermittelte Synthese von Indolizinen in Abwesenheit eines externen Photokatalysators. Angewandte Chemie 2015, 127, 15766. <https://doi.org/10.1002/ange.201506868>
  • Xuan Jun, Zeng Ting‐Ting, Feng Zhu‐Jia, Deng Qiao‐Hui, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing, Alper Howard: Redox‐Neutral α‐Allylation of Amines by Combining Palladium Catalysis and Visible‐Light Photoredox Catalysis. Angew Chem Int Ed 2015, 54, 1625. <https://doi.org/10.1002/anie.201409999>
  • Hollister Kyle A., Conner Elizabeth S., Spell Mark L., Deveaux Kristina, Maneval Léa, Beal Michael W., Ragains Justin R.: Remote Hydroxylation through Radical Translocation and Polar Crossover. Angew Chem Int Ed 2015, 54, 7837. <https://doi.org/10.1002/anie.201500880>
  • Iali Wissam, Lanoe Pierre‐Henri, Torelli Stéphane, Jouvenot Damien, Loiseau Frédérique, Lebrun Colette, Hamelin Olivier, Ménage Stéphane: A Ruthenium(II)–Copper(II) Dyad for the Photocatalytic Oxygenation of Organic Substrates Mediated by Dioxygen Activation. Angew Chem Int Ed 2015, 54, 8415. <https://doi.org/10.1002/anie.201501180>
  • Nakajima Masaki, Fava Eleonora, Loescher Sebastian, Jiang Zhen, Rueping Magnus: Photoredox‐Catalyzed Reductive Coupling of Aldehydes, Ketones, and Imines with Visible Light. Angew Chem Int Ed 2015, 54, 8828. <https://doi.org/10.1002/anie.201501556>
  • Sahoo Basudev, Li Jun‐Long, Glorius Frank: Visible‐Light Photoredox‐Catalyzed Semipinacol‐Type Rearrangement: Trifluoromethylation/Ring Expansion by a Radical–Polar Mechanism. Angew Chem Int Ed 2015, 54, 11577. <https://doi.org/10.1002/anie.201503210>
  • Zhou Quan‐Quan, Guo Wei, Ding Wei, Wu Xiong, Chen Xi, Lu Liang‐Qiu, Xiao Wen‐Jing: Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visible‐Light Photoredox Catalysis. Angew Chem Int Ed 2015, 54, 11196. <https://doi.org/10.1002/anie.201504559>
  • Corcé Vincent, Chamoreau Lise‐Marie, Derat Etienne, Goddard Jean‐Philippe, Ollivier Cyril, Fensterbank Louis: Silicates as Latent Alkyl Radical Precursors: Visible‐Light Photocatalytic Oxidation of Hypervalent Bis‐Catecholato Silicon Compounds. Angew Chem Int Ed 2015, 54, 11414. <https://doi.org/10.1002/anie.201504963>
  • Xuan Jun, Zhang Zhao‐Guo, Xiao Wen‐Jing: Visible‐Light‐Induced Decarboxylative Functionalization of Carboxylic Acids and Their Derivatives. Angew Chem Int Ed 2015, 54, 15632. <https://doi.org/10.1002/anie.201505731>
  • Tan Yuqi, Yuan Wei, Gong Lei, Meggers Eric: Aerobic Asymmetric Dehydrogenative Cross‐Coupling between Two CH Groups Catalyzed by a Chiral‐at‐Metal Rhodium Complex. Angew Chem Int Ed 2015, 54, 13045. <https://doi.org/10.1002/anie.201506273>
  • Bergonzini Giulia, Cassani Carlo, Wallentin Carl‐Johan: Acyl Radicals from Aromatic Carboxylic Acids by Means of Visible‐Light Photoredox Catalysis. Angew Chem Int Ed 2015, 54, 14066. <https://doi.org/10.1002/anie.201506432>
  • Sahoo Basudev, Hopkinson Matthew N., Glorius Frank: External‐Photocatalyst‐Free Visible‐Light‐Mediated Synthesis of Indolizines. Angew Chem Int Ed 2015, 54, 15545. <https://doi.org/10.1002/anie.201506868>
  • Hoffmann Norbert: Combining Photoredox and Metal Catalysis. ChemCatChem 2015, 7, 393. <https://doi.org/10.1002/cctc.201402868>
  • Majek Michal, Filace Fabiana, Jacobi von Wangelin Axel: Visible Light Driven Hydro‐/Deuterodefunctionalization of Anilines. Chemistry A European J 2015, 21, 4518. <https://doi.org/10.1002/chem.201406461>
  • Xuan Jun, Zeng Ting‐Ting, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing: Room Temperature CP Bond Formation Enabled by Merging Nickel Catalysis and Visible‐Light‐Induced Photoredox Catalysis. Chemistry A European J 2015, 21, 4962. <https://doi.org/10.1002/chem.201500227>
  • Holan Martin, Pohl Radek, Císařová Ivana, Klepetářová Blanka, Jones Peter G., Jahn Ullrich: Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions. Chemistry A European J 2015, 21, 9877. <https://doi.org/10.1002/chem.201500424>
  • Wang Chengfeng, Ren Xiang, Xie Hujun, Lu Zhan: [3+2] Redox‐Neutral Cycloaddition of Nitrocyclopropanes with Styrenes by Visible‐Light Photocatalysis. Chemistry A European J 2015, 21, 9676. <https://doi.org/10.1002/chem.201500873>
  • Wang Chuanyong, Zheng Yu, Huo Haohua, Röse Philipp, Zhang Lilu, Harms Klaus, Hilt Gerhard, Meggers Eric: Merger of Visible Light Induced Oxidation and Enantioselective Alkylation with a Chiral Iridium Catalyst. Chemistry A European J 2015, 21, 7355. <https://doi.org/10.1002/chem.201500998>
  • Majek Michal, Faltermeier Uwe, Dick Bernhard, Pérez‐Ruiz Raúl, Jacobi von Wangelin Axel: Application of Visible‐to‐UV Photon Upconversion to Photoredox Catalysis: The Activation of Aryl Bromides. Chemistry A European J 2015, 21, 15496. <https://doi.org/10.1002/chem.201502698>
  • Yang Qing‐Qing, Marchini Marianna, Xiao Wen‐Jing, Ceroni Paola, Bandini Marco: Visible‐Light‐Induced Direct Photocatalytic Carboxylation of Indoles with CBr4/MeOH. Chemistry A European J 2015, 21, 18052. <https://doi.org/10.1002/chem.201503787>
  • Schneider Ludovic, Mekmouche Yasmina, Rousselot‐Pailley Pierre, Simaan A. Jalila, Robert Viviane, Réglier Marius, Aukauloo Ally, Tron Thierry: Visible‐Light‐Driven Oxidation of Organic Substrates with Dioxygen Mediated by a [Ru(bpy)3]2+/Laccase System. ChemSusChem 2015, 8, 3048. <https://doi.org/10.1002/cssc.201500602>
  • Schroll Peter, König Burkhard: Photocatalytic α‐Oxyamination of Stable Enolates, Silyl Enol Ethers, and 2‐Oxoalkane Phosphonic Esters. Eur J Org Chem 2015, 2015, 309. <https://doi.org/10.1002/ejoc.201403433>
  • Hoffmann Norbert: Electron and hydrogen transfer in organic photochemical reactions. J of Physical Organic Chem 2015, 28, 121. <https://doi.org/10.1002/poc.3370>
  • Xiao Pu, Zhang Jing, Campolo Damien, Dumur Frederic, Gigmes Didier, Fouassier Jean Pierre, Lalevée Jacques: Copper and iron complexes as visible‐light‐sensitive photoinitiators of polymerization. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 2673. <https://doi.org/10.1002/pola.27762>
  • Dong Boliang, Su Yijin, Ye Xiaohan, Petersen Jeffrey L., Shi Xiaodong: Synthesis and characterization of fluorescent-active triazole-gold complexes. Sci. China Chem. 2015, 58, 1235. <https://doi.org/10.1007/s11426-015-5412-z>
  • Akita Munetaka, Koike Takashi: Sunlight-driven trifluoromethylation of olefinic substrates by photoredox catalysis: A green organic process. Comptes Rendus Chimie 2015, 18, 742. <https://doi.org/10.1016/j.crci.2015.01.013>
  • Zhu Mei, Fu Weijun, Zou Guanglong, Xu Chen, Wang Zhiqiang: Visible-light-mediated radical difluoromethylenephosphonation of 2-isocyanobiaryls with bromodifluoromethylphosphonate for the synthesis of 6-difluoromethylenephosphonyl-phenanthridines. Journal of Fluorine Chemistry 2015, 180, 1. <https://doi.org/10.1016/j.jfluchem.2015.07.028>
  • Xiao Pu, Zhang Jing, Dumur Frédéric, Tehfe Mohamad Ali, Morlet-Savary Fabrice, Graff Bernadette, Gigmes Didier, Fouassier Jean Pierre, Lalevée Jacques: Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Progress in Polymer Science 2015, 41, 32. <https://doi.org/10.1016/j.progpolymsci.2014.09.001>
  • Wang Xiaolei, Chen Chuo: An approach for the synthesis of nakamuric acid. Tetrahedron 2015, 71, 3690. <https://doi.org/10.1016/j.tet.2014.10.027>
  • Ma Yuyong, De Saptarshi, Chen Chuo: Syntheses of cyclic guanidine-containing natural products. Tetrahedron 2015, 71, 1145. <https://doi.org/10.1016/j.tet.2014.11.056>
  • Cao Min-Yi, Ren Xiang, Lu Zhan: Olefin difunctionalizations via visible light photocatalysis. Tetrahedron Letters 2015, 56, 3732. <https://doi.org/10.1016/j.tetlet.2015.04.091>
  • Lee Jun Hee, Mho Sun-il: A Tin-Free Route to trans-Diels–Alder Motifs by Visible Light Photoredox Catalysis. J. Org. Chem. 2015, 80, 3309. <https://doi.org/10.1021/acs.joc.5b00041>
  • Zheng Lewei, Yang Chao, Xu ZhaoZhong, Gao Fei, Xia Wujiong: Difunctionalization of Alkenes via the Visible-Light-Induced Trifluoromethylarylation/1,4-Aryl Shift/Desulfonylation Cascade Reactions. J. Org. Chem. 2015, 80, 5730. <https://doi.org/10.1021/acs.joc.5b00677>
  • Majhi Biju, Kundu Debasish, Ranu Brindaban C.: Ascorbic Acid Promoted Oxidative Arylation of Vinyl Arenes to 2-Aryl Acetophenones without Irradiation at Room Temperature under Aerobic Conditions. J. Org. Chem. 2015, 80, 7739. <https://doi.org/10.1021/acs.joc.5b00825>
  • Oderinde Martins S., Varela-Alvarez Adrian, Aquila Brian, Robbins Daniel W., Johannes Jeffrey W.: Effects of Molecular Oxygen, Solvent, and Light on Iridium-Photoredox/Nickel Dual-Catalyzed Cross-Coupling Reactions. J. Org. Chem. 2015, 80, 7642. <https://doi.org/10.1021/acs.joc.5b01193>
  • Pratsch Gerald, Overman Larry E.: Synthesis of 2,5-Diaryl-1,5-dienes from Allylic Bromides Using Visible-Light Photoredox Catalysis. J. Org. Chem. 2015, 80, 11388. <https://doi.org/10.1021/acs.joc.5b01962>
  • Lu Ping, Hou Tianyuan, Gu Xiangyong, Li Pixu: Visible-Light-Promoted Conversion of Alkyl Benzyl Ether to Alkyl Ester or Alcohol via O-α-sp3 C–H Cleavage. Org. Lett. 2015, 17, 1954. <https://doi.org/10.1021/acs.orglett.5b00663>
  • Kaldas Sherif J., Cannillo Alexandre, McCallum Terry, Barriault Louis: Indole Functionalization via Photoredox Gold Catalysis. Org. Lett. 2015, 17, 2864. <https://doi.org/10.1021/acs.orglett.5b01260>
  • Zoller Jochen, Fabry David C., Rueping Magnus: Unexpected Dual Role of Titanium Dioxide in the Visible Light Heterogeneous Catalyzed C–H Arylation of Heteroarenes. ACS Catal. 2015, 5, 3900. <https://doi.org/10.1021/acscatal.5b00668>
  • Knorn Matthias, Rawner Thomas, Czerwieniec Rafał, Reiser Oliver: [Copper(phenanthroline)(bisisonitrile)]+-Complexes for the Visible-Light-Mediated Atom Transfer Radical Addition and Allylation Reactions. ACS Catal. 2015, 5, 5186. <https://doi.org/10.1021/acscatal.5b01071>
  • Huo Haohua, Wang Chuanyong, Harms Klaus, Meggers Eric: Enantioselective, Catalytic Trichloromethylation through Visible-Light-Activated Photoredox Catalysis with a Chiral Iridium Complex. J. Am. Chem. Soc. 2015, 137, 9551. <https://doi.org/10.1021/jacs.5b06010>
  • Tang Jian, Grampp Günter, Liu Yun, Wang Bing-Xiang, Tao Fei-Fei, Wang Li-Jun, Liang Xue-Zheng, Xiao Hui-Quan, Shen Yong-Miao: Visible Light Mediated Cyclization of Tertiary Anilines with Maleimides Using Nickel(II) Oxide Surface-Modified Titanium Dioxide Catalyst. J. Org. Chem. 2015, 80, 2724. <https://doi.org/10.1021/jo502901h>
  • Meggers Eric: Asymmetric catalysis activated by visible light. Chem. Commun. 2015, 51, 3290. <https://doi.org/10.1039/C4CC09268F>
  • Wang Chengfeng, Lu Zhan: Catalytic enantioselective organic transformations via visible light photocatalysis. Org. Chem. Front. 2015, 2, 179. <https://doi.org/10.1039/C4QO00306C>
  • Li Yanjie, Miyazawa Kazuki, Koike Takashi, Akita Munetaka: Alkyl- and aryl-thioalkylation of olefins with organotrifluoroborates by photoredox catalysis. Org. Chem. Front. 2015, 2, 319. <https://doi.org/10.1039/C4QO00352G>
  • Wu Xinxin, Meng Chunna, Yuan Xiaoqian, Jia Xiaotong, Qian Xuhong, Ye Jinxing: Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes. Chem. Commun. 2015, 51, 11864. <https://doi.org/10.1039/C5CC04527D>
  • Wang Xiaolei, Gao Yang, Ma Zhiqiang, Rodriguez Rodrigo A., Yu Zhi-Xiang, Chen Chuo: Syntheses of sceptrins and nakamuric acid and insights into the biosyntheses of pyrrole–imidazole dimers. Org. Chem. Front. 2015, 2, 978. <https://doi.org/10.1039/C5QO00165J>
  • Dinda Milan, Bose Chandan, Ghosh Tridev, Maity Soumitra: Cross dehydrogenative coupling (CDC) of aldehydes with N-hydroxyimides by visible light photoredox catalysis. RSC Adv. 2015, 5, 44928. <https://doi.org/10.1039/C5RA05719A>
  • Dai Xiaojun, Mao Renjie, Guan Baochuan, Xu Xiaoliang, Li Xiaonian: Visible light photoredox catalysis: regioselective radical addition of aminoalkyl radicals to 2,3-allenoates. RSC Adv. 2015, 5, 55290. <https://doi.org/10.1039/C5RA10491B>
  • Duret Guillaume, Quinlan Robert, Bisseret Philippe, Blanchard Nicolas: Boron chemistry in a new light. Chem. Sci. 2015, 6, 5366. <https://doi.org/10.1039/C5SC02207J>
  • Ravelli Davide, Protti Stefano, Albini Angelo: Energy and Molecules from Photochemical/Photocatalytic Reactions. An Overview. Molecules 2015, 20, 1527. <https://doi.org/10.3390/molecules20011527>
  • Schultz Danielle M, Sawicki James W, Yoon Tehshik P: An improved procedure for the preparation of Ru(bpz)3(PF6)2 via a high-yielding synthesis of 2,2’-bipyrazine. Beilstein J. Org. Chem. 2015, 11, 61. <https://doi.org/10.3762/bjoc.11.9>
  • Miyake Yoshihiro: Visible-Light-Mediated Transformation of Nitrogen-Containing Compounds Based on Single Electron Transfer. J. Syn. Org. Chem., Jpn. 2015, 73, 874. <https://doi.org/10.5059/yukigoseikyokaishi.73.874>
  • Paria Suva, Reiser Oliver: Visible Light Photoredox Catalyzed Cascade Cyclizations of α‐Bromochalcones or α‐Bromocinnamates with Heteroarenes. Adv Synth Catal 2014, 356, 557. <https://doi.org/10.1002/adsc.201301069>
  • Guo Wei, Cheng Hong‐Gang, Chen Li‐Yan, Xuan Jun, Feng Zhu‐Jia, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing: De Novo Synthesis of γ,γ‐Disubstituted Butyrolactones through a Visible Light Photocatalytic Arylation–Lactonization Sequence. Adv Synth Catal 2014, 356, 2787. <https://doi.org/10.1002/adsc.201400041>
  • Pandey Ganesh, Jadhav Deepak, Tiwari Sandip Kumar, Singh Bhawana: Visible Light Photoredox Catalysis: Investigation of Distal sp3 CH Functionalization of Tertiary Amines for Alkylation Reaction. Adv Synth Catal 2014, 356, 2813. <https://doi.org/10.1002/adsc.201400107>
  • Xia Xu‐Dong, Xuan Jun, Wang Qiang, Lu Liang‐Qiu, Chen Jia‐Rong, Xiao Wen‐Jing: Synthesis of 2‐Substituted Indoles through Visible Light‐Induced Photocatalytic Cyclizations of Styryl Azides. Adv Synth Catal 2014, 356, 2807. <https://doi.org/10.1002/adsc.201400527>
  • Hopkinson Matthew N., Sahoo Basudev, Glorius Frank: Dual Photoredox and Gold Catalysis: Intermolecular Multicomponent Oxyarylation of Alkenes. Adv Synth Catal 2014, 356, 2794. <https://doi.org/10.1002/adsc.201400580>
  • Chenneberg Ludwig, Baralle Alexandre, Daniel Marion, Fensterbank Louis, Goddard Jean‐Philippe, Ollivier Cyril: Visible Light Photocatalytic Reduction of O‐Thiocarbamates: Development of a Tin‐Free Barton–McCombie Deoxygenation Reaction. Adv Synth Catal 2014, 356, 2756. <https://doi.org/10.1002/adsc.201400729>
  • Liu Jie, Liu Qiang, Yi Hong, Qin Chu, Bai Ruopeng, Qi Xiaotian, Lan Yu, Lei Aiwen: Visible‐Light‐Mediated Decarboxylation/Oxidative Amidation of α‐Keto Acids with Amines under Mild Reaction Conditions Using O2. Angewandte Chemie 2014, 126, 512. <https://doi.org/10.1002/ange.201308614>
  • Xuan Jun, Xia Xu‐Dong, Zeng Ting‐Ting, Feng Zhu‐Jia, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing: Visible‐Light‐Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metal‐Free Conditions. Angewandte Chemie 2014, 126, 5759. <https://doi.org/10.1002/ange.201400602>
  • Kafka František, Holan Martin, Hidasová Denisa, Pohl Radek, Císařová Ivana, Klepetářová Blanka, Jahn Ullrich: Oxidative Katalyse mit dem stöchiometrischen Oxidans als Reagens: eine effiziente Strategie für Einelektronentransfer‐induzierte Anion‐Radikal‐Tandemreaktionen. Angewandte Chemie 2014, 126, 10102. <https://doi.org/10.1002/ange.201403776>
  • Hurtley Anna E., Lu Zhan, Yoon Tehshik P.: [2+2] Cycloaddition of 1,3‐Dienes by Visible Light Photocatalysis. Angewandte Chemie 2014, 126, 9137. <https://doi.org/10.1002/ange.201405359>
  • Hu Xiao‐Qiang, Chen Jia‐Rong, Wei Qiang, Liu Feng‐Lei, Deng Qiao‐Hui, Beauchemin André M., Xiao Wen‐Jing: Photocatalytic Generation of N‐Centered Hydrazonyl Radicals:  A Strategy for Hydroamination of β,γ‐Unsaturated Hydrazones. Angewandte Chemie 2014, 126, 12359. <https://doi.org/10.1002/ange.201406491>
  • Liu Jie, Liu Qiang, Yi Hong, Qin Chu, Bai Ruopeng, Qi Xiaotian, Lan Yu, Lei Aiwen: Visible‐Light‐Mediated Decarboxylation/Oxidative Amidation of α‐Keto Acids with Amines under Mild Reaction Conditions Using O2. Angew Chem Int Ed 2014, 53, 502. <https://doi.org/10.1002/anie.201308614>
  • Xuan Jun, Xia Xu‐Dong, Zeng Ting‐Ting, Feng Zhu‐Jia, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing: Visible‐Light‐Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metal‐Free Conditions. Angew Chem Int Ed 2014, 53, 5653. <https://doi.org/10.1002/anie.201400602>
  • Kafka František, Holan Martin, Hidasová Denisa, Pohl Radek, Císařová Ivana, Klepetářová Blanka, Jahn Ullrich: Oxidative Catalysis Using the Stoichiometric Oxidant as a Reagent: An Efficient Strategy for Single‐Electron‐Transfer‐Induced Tandem Anion–Radical Reactions. Angew Chem Int Ed 2014, 53, 9944. <https://doi.org/10.1002/anie.201403776>
  • Hurtley Anna E., Lu Zhan, Yoon Tehshik P.: [2+2] Cycloaddition of 1,3‐Dienes by Visible Light Photocatalysis. Angew Chem Int Ed 2014, 53, 8991. <https://doi.org/10.1002/anie.201405359>
  • Hu Xiao‐Qiang, Chen Jia‐Rong, Wei Qiang, Liu Feng‐Lei, Deng Qiao‐Hui, Beauchemin André M., Xiao Wen‐Jing: Photocatalytic Generation of N‐Centered Hydrazonyl Radicals:  A Strategy for Hydroamination of β,γ‐Unsaturated Hydrazones. Angew Chem Int Ed 2014, 53, 12163. <https://doi.org/10.1002/anie.201406491>
  • Lawati Haider A. J. Al, Dahmani Zeiyana M. Al, Varma Gouri B, Suliman FakhrEldin O: Photoinduced oxidation of a tris(2,2'‐bipyridyl)ruthenium(II)–peroxodisulfate chemiluminescence system for the analysis of mebeverine HCl pharmaceutical formulations and biological fluids using a two‐chip device. Luminescence 2014, 29, 275. <https://doi.org/10.1002/bio.2540>
  • Paria Suva, Reiser Oliver: Copper in Photocatalysis. ChemCatChem 2014, 6, 2477. <https://doi.org/10.1002/cctc.201402237>
  • Xue Dong, Jia Zhi‐Hui, Zhao Cong‐Jun, Zhang Yan‐Yan, Wang Chao, Xiao Jianliang: Direct Arylation of N‐Heteroarenes with Aryldiazonium Salts by Photoredox Catalysis in Water. Chemistry A European J 2014, 20, 2960. <https://doi.org/10.1002/chem.201304120>
  • Miyake Yoshihiro, Ashida Yuya, Nakajima Kazunari, Nishibayashi Yoshiaki: Visible‐Light‐Mediated Addition of α‐Aminoalkyl Radicals to [60]Fullerene by Using Photoredox Catalysts. Chemistry A European J 2014, 20, 6120. <https://doi.org/10.1002/chem.201304731>
  • Hopkinson Matthew N., Sahoo Basudev, Li Jun‐Long, Glorius Frank: Dual Catalysis Sees the Light: Combining Photoredox with Organo‐, Acid, and Transition‐Metal Catalysis. Chemistry A European J 2014, 20, 3874. <https://doi.org/10.1002/chem.201304823>
  • Xuan Jun, Feng Zhu‐Jia, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing: Visible‐Light‐Induced CS Bond Activation: Facile Access to 1,4‐Diketones from β‐Ketosulfones. Chemistry A European J 2014, 20, 3045. <https://doi.org/10.1002/chem.201304898>
  • Su Yuanhai, Straathof Natan J. W., Hessel Volker, Noël Timothy: Photochemical Transformations Accelerated in Continuous‐Flow Reactors: Basic Concepts and Applications. Chemistry A European J 2014, 20, 10562. <https://doi.org/10.1002/chem.201400283>
  • Barbante Gregory J., Kebede Noah, Hindson Christopher M., Doeven Egan H., Zammit Elizabeth M., Hanson Graeme R., Hogan Conor F., Francis Paul S.: Control of Excitation and Quenching in Multi‐colour Electrogenerated Chemiluminescence Systems through Choice of Co‐reactant. Chemistry A European J 2014, 20, 14026. <https://doi.org/10.1002/chem.201403767>
  • Wang Hao, Tao Jinyi, Cai Xinpei, Chen Wei, Zhao Yueqi, Xu Yang, Yao Wang, Zeng Jing, Wan Qian: Stereoselective Synthesis of α‐Linked 2‐Deoxy Glycosides Enabled by Visible‐Light‐Mediated Reductive Deiodination. Chemistry A European J 2014, 20, 17319. <https://doi.org/10.1002/chem.201405516>
  • Liu Yu, Zhang Jia‐Ling, Song Ren‐Jie, Li Jin‐Heng: Visible‐Light‐Facilitated 5‐exo‐trig Cyclization of 1,6‐Dienes with Alkyl Chlorides: Selective Scission of the C(sp3)–H Bond in Alkyl Chlorides. Eur J Org Chem 2014, 2014, 1177. <https://doi.org/10.1002/ejoc.201301849>
  • Koike Takashi, Akita Munetaka: Trifluoromethylation by Visible-Light-Driven Photoredox Catalysis. Top Catal 2014, 57, 967. <https://doi.org/10.1007/s11244-014-0259-7>
  • Gaikwad A. G.: Modification and application of cellulose fibers for the transport of carbonate ions. Int J Ind Chem 2014, 5. <https://doi.org/10.1007/s40090-014-0012-x>
  • Dai Xiao-Jun, Xu Xiao-Liang, Cheng Dong-Ping, Li Xiao-Nian: Visible-light photoredox-mediated oxidation of N-methyl tertiaryamines under catalyst free conditions: Direct synthesis of methylene-bridged bis-1,3-dicarbonyl compounds. Chinese Chemical Letters 2014, 25, 545. <https://doi.org/10.1016/j.cclet.2014.01.021>
  • Li Lun, Chen Qing-Yun, Guo Yong: Synthesis of α-CF3 ketones from alkenes and electrophilic trifluoromethylating reagents by visible-light driven photoredox catalysis. Journal of Fluorine Chemistry 2014, 167, 79. <https://doi.org/10.1016/j.jfluchem.2014.05.013>
  • Fu Weijun, Zhu Mei, Xu Chen, Zou Guanglong, Wang Zhiqiang, Ji Baoming: Visible-light-mediated trifluoroethylation of 2-isocyanobiaryl with trifluoroethyl iodide: Synthesis of 6-trifluoroethyl-phenanthridines. Journal of Fluorine Chemistry 2014, 168, 50. <https://doi.org/10.1016/j.jfluchem.2014.08.022>
  • Hoffmann Norbert: Photochemical reactions applied to the synthesis of helicenes and helicene-like compounds. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2014, 19, 1. <https://doi.org/10.1016/j.jphotochemrev.2013.11.001>
  • Keylor Mitchell H., Park James E., Wallentin Carl-Johan, Stephenson Corey R.J.: Photocatalytic initiation of thiol–ene reactions: synthesis of thiomorpholin-3-ones. Tetrahedron 2014, 70, 4264. <https://doi.org/10.1016/j.tet.2014.03.041>
  • Xie Jin, Jin Hongming, Xu Pan, Zhu Chengjian: When C–H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Letters 2014, 55, 36. <https://doi.org/10.1016/j.tetlet.2013.10.090>
  • Srivastava Vishnu P., Yadav Arvind K., Yadav Lal Dhar S.: Visible-light-induced cyanation of aza-Baylis–Hillman adducts: a Michael type addition. Tetrahedron Letters 2014, 55, 1788. <https://doi.org/10.1016/j.tetlet.2014.01.121>
  • Yadav Arvind K., Yadav Lal Dhar S.: Visible-light-promoted aerobic oxidative cyclization to access 1,3,4-oxadiazoles from aldehydes and acylhydrazides. Tetrahedron Letters 2014, 55, 2065. <https://doi.org/10.1016/j.tetlet.2014.02.022>
  • Ding Wei, Zhou Quan-Quan, Xuan Jun, Li Tian-Ren, Lu Liang-Qiu, Xiao Wen-Jing: Photocatalytic aerobic oxidation/semipinacol rearrangement sequence: a concise route to the core of pseudoindoxyl alkaloids. Tetrahedron Letters 2014, 55, 4648. <https://doi.org/10.1016/j.tetlet.2014.06.102>
  • Sebren Leanne J., Devery James J., Stephenson Corey R. J.: Catalytic Radical Domino Reactions in Organic Synthesis. ACS Catal. 2014, 4, 703. <https://doi.org/10.1021/cs400995r>
  • Li Xiang, Gu Xiangyong, Li Yongjuan, Li Pixu: Aerobic Transition-Metal-Free Visible-Light Photoredox Indole C-3 Formylation Reaction. ACS Catal. 2014, 4, 1897. <https://doi.org/10.1021/cs5005129>
  • Rueda-Becerril Montserrat, Mahé Olivier, Drouin Myriam, Majewski Marek B., West Julian G., Wolf Michael O., Sammis Glenn M., Paquin Jean-François: Direct C–F Bond Formation Using Photoredox Catalysis. J. Am. Chem. Soc. 2014, 136, 2637. <https://doi.org/10.1021/ja412083f>
  • Shu Xing-zhong, Zhang Miao, He Ying, Frei Heinz, Toste F. Dean: Dual Visible Light Photoredox and Gold-Catalyzed Arylative Ring Expansion. J. Am. Chem. Soc. 2014, 136, 5844. <https://doi.org/10.1021/ja500716j>
  • Zuo Zhiwei, MacMillan David W. C.: Decarboxylative Arylation of α-Amino Acids via Photoredox Catalysis: A One-Step Conversion of Biomass to Drug Pharmacophore. J. Am. Chem. Soc. 2014, 136, 5257. <https://doi.org/10.1021/ja501621q>
  • Terrett Jack A., Clift Michael D., MacMillan David W. C.: Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis. J. Am. Chem. Soc. 2014, 136, 6858. <https://doi.org/10.1021/ja502639e>
  • Tyson Elizabeth L., Niemeyer Zachary L., Yoon Tehshik P.: Redox Mediators in Visible Light Photocatalysis: Photocatalytic Radical Thiol–Ene Additions. J. Org. Chem. 2014, 79, 1427. <https://doi.org/10.1021/jo500031g>
  • Dai Xiaojun, Cheng Dongping, Guan Baochuan, Mao Wenjuan, Xu Xiaoliang, Li Xiaonian: The Coupling of Tertiary Amines with Acrylate Derivatives via Visible-Light Photoredox Catalysis. J. Org. Chem. 2014, 79, 7212. <https://doi.org/10.1021/jo501097b>
  • Fan Weigang, Yang Qi, Xu Fengshan, Li Pixu: A Visible-Light-Promoted Aerobic Metal-Free C-3 Thiocyanation of Indoles. J. Org. Chem. 2014, 79, 10588. <https://doi.org/10.1021/jo5015799>
  • Senthil Murugan Krishnan, Rajendran Thangamuthu, Balakrishnan Gopalakrishnan, Ganesan Muniyandi, Sivasubramanian Veluchamy Kamaraj, Sankar Jeyaraman, Ilangovan Andivelu, Ramamurthy Perumal, Rajagopal Seenivasan: Visible-Light Activation of the Bimetallic Chromophore–Catalyst Dyad: Analysis of Transient Intermediates and Reactivity toward Organic Sulfides. J. Phys. Chem. A 2014, 118, 4451. <https://doi.org/10.1021/jp501084b>
  • Oh Se Hwan, Malpani Yashwardhan R., Ha Neul, Jung Young-Sik, Han Soo Bong: Vicinal Difunctionalization of Alkenes: Chlorotrifluoromethylation with CF3SO2Cl by Photoredox Catalysis. Org. Lett. 2014, 16, 1310. <https://doi.org/10.1021/ol403716t>
  • Carboni Aude, Dagousset Guillaume, Magnier Emmanuel, Masson Géraldine: Photoredox-Induced Three-Component Oxy-, Amino-, and Carbotrifluoromethylation of Enecarbamates. Org. Lett. 2014, 16, 1240. <https://doi.org/10.1021/ol500374e>
  • Hou Hong, Zhu Shaoqun, Pan Fangfang, Rueping Magnus: Visible-Light Photoredox-Catalyzed Synthesis of Nitrones: Unexpected Rate Acceleration by Water in the Synthesis of Isoxazolidines. Org. Lett. 2014, 16, 2872. <https://doi.org/10.1021/ol500893g>
  • Dagousset Guillaume, Carboni Aude, Magnier Emmanuel, Masson Géraldine: Photoredox-Induced Three-Component Azido- and Aminotrifluoromethylation of Alkenes. Org. Lett. 2014, 16, 4340. <https://doi.org/10.1021/ol5021477>
  • Feng Zhu-Jia, Xuan Jun, Xia Xu-Dong, Ding Wei, Guo Wei, Chen Jia-Rong, Zou You-Quan, Lu Liang-Qiu, Xiao Wen-Jing: Direct sp3 C–H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis. Org. Biomol. Chem. 2014, 12, 2037. <https://doi.org/10.1039/C3OB42453G>
  • Keshari Twinkle, Srivastava Vishnu P., Yadav Lal Dhar S.: Visible-light-initiated photo-oxidative cyclization of phenolic amidines using CBr4 – A metal free approach to 2-aminobenzoxazoles. RSC Adv. 2014, 4, 5815. <https://doi.org/10.1039/c3ra46314a>
  • Yadav Arvind K., Srivastava Vishnu P., Yadav Lal Dhar S.: Visible-light-mediated efficient conversion of aldoximes and primary amides into nitriles. RSC Adv. 2014, 4, 4181. <https://doi.org/10.1039/C3RA46553E>
  • Bergonzini Giulia, Schindler Corinna S., Wallentin Carl-Johan, Jacobsen Eric N., Stephenson Corey R. J.: Photoredox activation and anion binding catalysis in the dual catalytic enantioselective synthesis of β-amino esters. Chem. Sci. 2014, 5, 112. <https://doi.org/10.1039/C3SC52265B>
  • Bergman Nina, Thapper Anders, Styring Stenbjörn, Bergquist Jonas, Shevchenko Denys: Quantitative determination of the Ru(bpy)32+ cation in photochemical reactions by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Methods 2014, 6, 8513. <https://doi.org/10.1039/C4AY01379D>
  • Hari Durga Prasad, König Burkhard: Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. 2014, 50, 6688. <https://doi.org/10.1039/C4CC00751D>
  • Nakajima Masaki, Lefebvre Quentin, Rueping Magnus: Visible light photoredox-catalysed intermolecular radical addition of α-halo amides to olefins. Chem. Commun. 2014, 50, 3619. <https://doi.org/10.1039/c4cc00753k>
  • Carboni Aude, Dagousset Guillaume, Magnier Emmanuel, Masson Géraldine: One pot and selective intermolecular aryl- and heteroaryl-trifluoromethylation of alkenes by photoredox catalysis. Chem. Commun. 2014, 50, 14197. <https://doi.org/10.1039/C4CC07066F>
  • Zou You-Quan, Guo Wei, Liu Feng-Lei, Lu Liang-Qiu, Chen Jia-Rong, Xiao Wen-Jing: Visible-light-induced photocatalytic formyloxylation reactions of 3-bromooxindoles with water and DMF: the scope and mechanism. Green Chem. 2014, 16, 3787. <https://doi.org/10.1039/C4GC00647J>
  • Keshari Twinkle, Yadav Vinod K., Srivastava Vishnu P., Yadav Lal Dhar S.: Visible light organophotoredox catalysis: a general approach to β-keto sulfoxidation of alkenes. Green Chem. 2014, 16, 3986. <https://doi.org/10.1039/C4GC00857J>
  • Zhang Cai: Recent advances in trifluoromethylation of organic compounds using Umemoto's reagents. Org. Biomol. Chem. 2014, 12, 6580. <https://doi.org/10.1039/C4OB00671B>
  • Koike Takashi, Akita Munetaka: Visible-light radical reaction designed by Ru- and Ir-based photoredox catalysis. Inorg. Chem. Front. 2014, 1, 562. <https://doi.org/10.1039/C4QI00053F>
  • Daniel Marion, Fensterbank Louis, Goddard Jean-Philippe, Ollivier Cyril: Visible-light photocatalytic oxidation of 1,3-dicarbonyl compounds and carbon–carbon bond formation. Org. Chem. Front. 2014, 1, 551. <https://doi.org/10.1039/c4qo00071d>
  • Liu Yu, Zhang Jia-Ling, Song Ren-Jie, Li Jin-Heng: 1,2-Alkylarylation of activated alkenes with dual C–H bonds of arenes and alkyl halides toward polyhalo-substituted oxindoles. Org. Chem. Front. 2014, 1, 1289. <https://doi.org/10.1039/C4QO00251B>
  • Fu Weijun, Zhu Mei, Xu Fengjuan, Fu Yuqin, Xu Chen, Zou Dapeng: An approach to 6-trifluoromethyl-phenanthridines through visible-light-mediated intramolecular radical cyclization of trifluoroacetimidoyl chlorides. RSC Adv. 2014, 4, 17226. <https://doi.org/10.1039/c4ra02384f>
  • Yadav Arvind K., Srivastava Vishnu P., Yadav Lal Dhar S.: An easy access to unsymmetrical ureas: a photocatalytic approach to the Lossen rearrangement. RSC Adv. 2014, 4, 24498. <https://doi.org/10.1039/c4ra03805c>
  • Credou Julie, Faddoul Rita, Berthelot Thomas: One-step and eco-friendly modification of cellulose membranes by polymer grafting. RSC Adv. 2014, 4, 60959. <https://doi.org/10.1039/C4RA11219A>
  • Prier Christopher K., MacMillan David W. C.: Amine α-heteroarylation via photoredox catalysis: a homolytic aromatic substitution pathway. Chem. Sci. 2014, 5, 4173. <https://doi.org/10.1039/C4SC02155J>
  • Ghosh Indrajit, Ghosh Tamal, Bardagi Javier I., König Burkhard: Reduction of aryl halides by consecutive visible light-induced electron transfer processes. Science 2014, 346, 725. <https://doi.org/10.1126/science.1258232>
  • Tomita Ren, Yasu Yusuke, Koike Takashi, Akita Munetaka: Direct C–H trifluoromethylation of di- and trisubstituted alkenes by photoredox catalysis. Beilstein J. Org. Chem. 2014, 10, 1099. <https://doi.org/10.3762/bjoc.10.108>
  • Nguyen Theresa H, Maity Soumitra, Zheng Nan: Visible light mediated intermolecular [3 + 2] annulation of cyclopropylanilines with alkynes. Beilstein J. Org. Chem. 2014, 10, 975. <https://doi.org/10.3762/bjoc.10.96>
  • Majek Michal, Filace Fabiana, Wangelin Axel Jacobi von: On the mechanism of photocatalytic reactions with eosin Y. Beilstein J. Org. Chem. 2014, 10, 981. <https://doi.org/10.3762/bjoc.10.97>
  • Akita Munetaka, Koike Takashi, Inagaki Akiko: Organometallic Photocatalysis Promoted by Visible Light (Sunlight): Photo-redox Catalysis and Difunctional Dinuclear Catalyst System. J. Synth. Org. Chem. Jpn. 2014, 72, 538. <https://doi.org/10.5059/yukigoseikyokaishi.72.538>
  • Zhao Junfeng, Mück‐Lichtenfeld Christian, Studer Armido: Cooperative N‐Heterocyclic Carbene (NHC) and Ruthenium Redox Catalysis: Oxidative Esterification of Aldehydes with Air as the Terminal Oxidant. Adv Synth Catal 2013, 355, 1098. <https://doi.org/10.1002/adsc.201300034>
  • Donck Simon, Baroudi Abdulkader, Fensterbank Louis, Goddard Jean‐Philippe, Ollivier Cyril: Visible‐Light Photocatalytic Reduction of Sulfonium Salts as a Source of Aryl Radicals. Adv Synth Catal 2013, 355, 1477. <https://doi.org/10.1002/adsc.201300040>
  • An Jing, Zou You‐Quan, Yang Qing‐Qing, Wang Qiang, Xiao Wen‐Jing: Visible Light‐Induced Aerobic Oxyamidation of Indoles: A Photocatalytic Strategy for the Preparation of Tetrahydro‐5H‐indolo[2,3‐b]quinolinols. Adv Synth Catal 2013, 355, 1483. <https://doi.org/10.1002/adsc.201300175>
  • Kachkovskyi Georgiy, Faderl Christian, Reiser Oliver: Visible Light‐Mediated Synthesis of (Spiro)anellated Furans. Adv Synth Catal 2013, 355, 2240. <https://doi.org/10.1002/adsc.201300221>
  • Deng Guo‐Bo, Wang Zhi‐Qiang, Xia Jia‐Dong, Qian Peng‐Cheng, Song Ren‐Jie, Hu Ming, Gong Lu‐Bin, Li Jin‐Heng: Tandem Cyclizations of 1,6‐Enynes with Arylsulfonyl Chlorides by Using Visible‐Light Photoredox Catalysis. Angewandte Chemie 2013, 125, 1575. <https://doi.org/10.1002/ange.201208380>
  • Hari Durga Prasad, König Burkhard: Die photokatalytische Meerwein‐Arylierung: eine klassische Aryldiazoniumsalz‐Reaktion in neuem Licht. Angewandte Chemie 2013, 125, 4832. <https://doi.org/10.1002/ange.201210276>
  • Majek Michal, Jacobi von Wangelin Axel: Lichtvermittelte kupferkatalysierte C‐C‐ und C‐N‐Bindungsknüpfung. Angewandte Chemie 2013, 125, 6033. <https://doi.org/10.1002/ange.201301843>
  • Revol Guillaume, McCallum Terry, Morin Mathieu, Gagosz Fabien, Barriault Louis: Photoredox Transformations with Dimeric Gold Complexes. Angewandte Chemie 2013, 125, 13584. <https://doi.org/10.1002/ange.201306727>
  • Deng Guo‐Bo, Wang Zhi‐Qiang, Xia Jia‐Dong, Qian Peng‐Cheng, Song Ren‐Jie, Hu Ming, Gong Lu‐Bin, Li Jin‐Heng: Tandem Cyclizations of 1,6‐Enynes with Arylsulfonyl Chlorides by Using Visible‐Light Photoredox Catalysis. Angew Chem Int Ed 2013, 52, 1535. <https://doi.org/10.1002/anie.201208380>
  • Hari Durga Prasad, König Burkhard: The Photocatalyzed Meerwein Arylation: Classic Reaction of Aryl Diazonium Salts in a New Light. Angew Chem Int Ed 2013, 52, 4734. <https://doi.org/10.1002/anie.201210276>
  • Majek Michal, Jacobi von Wangelin Axel: Ambient‐Light‐Mediated Copper‐Catalyzed CC and CN Bond Formation. Angew Chem Int Ed 2013, 52, 5919. <https://doi.org/10.1002/anie.201301843>
  • Revol Guillaume, McCallum Terry, Morin Mathieu, Gagosz Fabien, Barriault Louis: Photoredox Transformations with Dimeric Gold Complexes. Angew Chem Int Ed 2013, 52, 13342. <https://doi.org/10.1002/anie.201306727>
  • Xuan Jun, Li Bin‐Jie, Feng Zhu‐Jia, Sun Guo‐Dong, Ma Huan‐Huan, Yuan Zhi‐Wei, Chen Jia‐Rong, Lu Liang‐Qiu, Xiao Wen‐Jing: Desulfonylation of Tosyl Amides through Catalytic Photoredox Cleavage of NS Bond Under Visible‐Light Irradiation. Chemistry — An Asian Journal 2013, 8, 1090. <https://doi.org/10.1002/asia.201300224>
  • Liu Qiang, Yi Hong, Liu Jie, Yang Yuhong, Zhang Xu, Zeng Ziqi, Lei Aiwen: Visible‐Light Photocatalytic Radical Alkenylation of α‐Carbonyl Alkyl Bromides and Benzyl Bromides. Chemistry A European J 2013, 19, 5120. <https://doi.org/10.1002/chem.201203694>
  • Baralle Alexandre, Fensterbank Louis, Goddard Jean‐Philippe, Ollivier Cyril: Aryl Radical Formation by Copper(I) Photocatalyzed Reduction of Diaryliodonium Salts: NMR Evidence for a CuII/CuI Mechanism. Chemistry A European J 2013, 19, 10809. <https://doi.org/10.1002/chem.201301449>
  • Gu Xiangyong, Li Xiang, Qu Yue, Yang Qi, Li Pixu, Yao Yingming: Intermolecular Visible‐Light Photoredox Atom‐Transfer Radical [3+2]‐Cyclization of 2‐(Iodomethyl)cyclopropane‐1,1‐dicarboxylate with Alkenes and Alkynes. Chemistry A European J 2013, 19, 11878. <https://doi.org/10.1002/chem.201301943>
  • Xu Pan, Xie Jin, Xue Qicai, Pan Changduo, Cheng Yixiang, Zhu Chengjian: Visible‐Light‐Induced Trifluoromethylation of N‐Aryl Acrylamides: A Convenient and Effective Method To Synthesize CF3‐Containing Oxindoles Bearing a Quaternary Carbon Center. Chemistry A European J 2013, 19, 14039. <https://doi.org/10.1002/chem.201302407>
  • Xuan Jun, Lu Liang‐Qiu, Chen Jia‐Rong, Xiao Wen‐Jing: Visible‐Light‐Driven Photoredox Catalysis in the Construction of Carbocyclic and Heterocyclic Ring Systems. Eur J Org Chem 2013, 2013, 6755. <https://doi.org/10.1002/ejoc.201300596>
  • Zibareva I. V., Parmon V. N.: Identification of “hot spots” of the science of catalysis: bibliometric and thematic analysis of nowaday reviews and monographs. Russ Chem Bull 2013, 62, 2266. <https://doi.org/10.1007/s11172-013-0329-1>
  • Spell Mark, Wang Xiaoping, Wahba Amir E., Conner Elizabeth, Ragains Justin: An α-selective, visible light photocatalytic glycosylation of alcohols with selenoglycosides. Carbohydrate Research 2013, 369, 42. <https://doi.org/10.1016/j.carres.2013.01.004>
  • Mizuta Satoshi, Verhoog Stefan, Wang Xin, Shibata Norio, Gouverneur Véronique, Médebielle Maurice: Redox chemistry of trifluoromethyl sulfonium salts as CF3 radical sources. Journal of Fluorine Chemistry 2013, 155, 124. <https://doi.org/10.1016/j.jfluchem.2013.07.006>
  • Zhao Yaohong, Cai Shunyou, Li Jing, Wang David Zhigang: Visible-light photo-catalytic C–C bond cleavages: preparations of N,N-dialkylformamides from 1,2-vicinal diamines. Tetrahedron 2013, 69, 8129. <https://doi.org/10.1016/j.tet.2013.07.056>
  • Bouriga Meriem, Chehimi Mohamed M., Combellas Catherine, Decorse Philippe, Kanoufi Frédéric, Deronzier Alain, Pinson Jean: Sensitized Photografting of Diazonium Salts by Visible Light. Chem. Mater. 2013, 25, 90. <https://doi.org/10.1021/cm3032994>
  • Prier Christopher K., Rankic Danica A., MacMillan David W. C.: Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322. <https://doi.org/10.1021/cr300503r>
  • Yoon Tehshik P.: Visible Light Photocatalysis: The Development of Photocatalytic Radical Ion Cycloadditions. ACS Catal. 2013, 3, 895. <https://doi.org/10.1021/cs400088e>
  • Rueping Magnus, Vila Carlos, Bootwicha Teerawut: Continuous Flow Organocatalytic C–H Functionalization and Cross-Dehydrogenative Coupling Reactions: Visible Light Organophotocatalysis for Multicomponent Reactions and C–C, C–P Bond Formations. ACS Catal. 2013, 3, 1676. <https://doi.org/10.1021/cs400350j>
  • Zhu Shaoqun, Das Arindam, Bui Lan, Zhou Hanjun, Curran Dennis P., Rueping Magnus: Oxygen Switch in Visible-Light Photoredox Catalysis: Radical Additions and Cyclizations and Unexpected C–C-Bond Cleavage Reactions. J. Am. Chem. Soc. 2013, 135, 1823. <https://doi.org/10.1021/ja309580a>
  • Sahoo Basudev, Hopkinson Matthew N., Glorius Frank: Combining Gold and Photoredox Catalysis: Visible Light-Mediated Oxy- and Aminoarylation of Alkenes. J. Am. Chem. Soc. 2013, 135, 5505. <https://doi.org/10.1021/ja400311h>
  • Mizuta Satoshi, Verhoog Stefan, Engle Keary M., Khotavivattana Tanatorn, O’Duill Miriam, Wheelhouse Katherine, Rassias Gerasimos, Médebielle Maurice, Gouverneur Véronique: Catalytic Hydrotrifluoromethylation of Unactivated Alkenes. J. Am. Chem. Soc. 2013, 135, 2505. <https://doi.org/10.1021/ja401022x>
  • Rono Lydia J., Yayla Hatice G., Wang David Y., Armstrong Michael F., Knowles Robert R.: Enantioselective Photoredox Catalysis Enabled by Proton-Coupled Electron Transfer: Development of an Asymmetric Aza-Pinacol Cyclization. J. Am. Chem. Soc. 2013, 135, 17735. <https://doi.org/10.1021/ja4100595>
  • Tyson Elizabeth L., Ament Michael S., Yoon Tehshik P.: Transition Metal Photoredox Catalysis of Radical Thiol-Ene Reactions. J. Org. Chem. 2013, 78, 2046. <https://doi.org/10.1021/jo3020825>
  • Ruiz Espelt Laura, Wiensch Eric M., Yoon Tehshik P.: Brønsted Acid Cocatalysts in Photocatalytic Radical Addition of α-Amino C–H Bonds across Michael Acceptors. J. Org. Chem. 2013, 78, 4107. <https://doi.org/10.1021/jo400428m>
  • Wever Walter J., Cinelli Maris A., Bowers Albert A.: Visible Light Mediated Activation and O-Glycosylation of Thioglycosides. Org. Lett. 2013, 15, 30. <https://doi.org/10.1021/ol302941q>
  • Sun Hongnan, Yang Chao, Gao Fei, Li Zhe, Xia Wujiong: Oxidative C–C Bond Cleavage of Aldehydes via Visible-Light Photoredox Catalysis. Org. Lett. 2013, 15, 624. <https://doi.org/10.1021/ol303437m>
  • Mizuta Satoshi, Engle Keary M., Verhoog Stefan, Galicia-López Oscar, O’Duill Miriam, Médebielle Maurice, Wheelhouse Katherine, Rassias Gerasimos, Thompson Amber L., Gouverneur Véronique: Trifluoromethylation of Allylsilanes under Photoredox Catalysis. Org. Lett. 2013, 15, 1250. <https://doi.org/10.1021/ol400184t>
  • Rueping Magnus, Vila Carlos: Visible Light Photoredox-Catalyzed Multicomponent Reactions. Org. Lett. 2013, 15, 2092. <https://doi.org/10.1021/ol400317v>
  • Yasu Yusuke, Koike Takashi, Akita Munetaka: Intermolecular Aminotrifluoromethylation of Alkenes by Visible-Light-Driven Photoredox Catalysis. Org. Lett. 2013, 15, 2136. <https://doi.org/10.1021/ol4006272>
  • Zhou Hongxia, Lu Ping, Gu Xiangyong, Li Pixu: Visible-Light-Mediated Nucleophilic Addition of an α-Aminoalkyl Radical to Isocyanate or Isothiocyanate. Org. Lett. 2013, 15, 5646. <https://doi.org/10.1021/ol402573j>
  • Nguyen John D., Reiß Barbara, Dai Chunhui, Stephenson Corey R. J.: Batch to flow deoxygenation using visible light photoredox catalysis. Chem. Commun. 2013, 49, 4352. <https://doi.org/10.1039/C2CC37206A>
  • Ravelli Davide, Fagnoni Maurizio, Albini Angelo: Photoorganocatalysis. What for?. Chem. Soc. Rev. 2013, 42, 97. <https://doi.org/10.1039/C2CS35250H>
  • Gu Xiangyong, Li Xiang, Chai Yahong, Yang Qi, Li Pixu, Yao Yingming: A simple metal-free catalytic sulfoxidation under visible light and air. Green Chem. 2013, 15, 357. <https://doi.org/10.1039/c2gc36683e>
  • Yasu Yusuke, Koike Takashi, Akita Munetaka: Visible-light-induced synthesis of a variety of trifluoromethylated alkenes from potassium vinyltrifluoroborates by photoredox catalysis. Chem. Commun. 2013, 49, 2037. <https://doi.org/10.1039/c3cc39235j>
  • Majek Michal, von Wangelin Axel Jacobi: Organocatalytic visible light mediated synthesis of aryl sulfides. Chem. Commun. 2013, 49, 5507. <https://doi.org/10.1039/c3cc41867g>
  • Xie Jin, Xu Pan, Li Huamin, Xue Qicai, Jin Hongming, Cheng Yixiang, Zhu Chengjian: A room temperature decarboxylation/C–H functionalization cascade by visible-light photoredox catalysis. Chem. Commun. 2013, 49, 5672. <https://doi.org/10.1039/c3cc42672f>
  • Miyazawa Kazuki, Yasu Yusuke, Koike Takashi, Akita Munetaka: Visible-light-induced hydroalkoxymethylation of electron-deficient alkenes by photoredox catalysis. Chem. Commun. 2013, 49, 7249. <https://doi.org/10.1039/c3cc42695e>
  • Yadav Arvind K., Srivastava Vishnu P., Yadav Lal Dhar S.: Visible-light-mediated eosin Y catalyzed aerobic desulfurization of thioamides into amides. New J. Chem. 2013, 37, 4119. <https://doi.org/10.1039/c3nj00870c>
  • Xi Yumeng, Yi Hong, Lei Aiwen: Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem. 2013, 11, 2387. <https://doi.org/10.1039/c3ob40137e>
  • Gu Xiangyong, Lu Ping, Fan Weigang, Li Pixu, Yao Yingming: Visible light photoredox atom transfer Ueno–Stork reaction. Org. Biomol. Chem. 2013, 11, 7088. <https://doi.org/10.1039/c3ob41600c>
  • Pirnot Michael T., Rankic Danica A., Martin David B. C., MacMillan David W. C.: Photoredox Activation for the Direct β-Arylation of Ketones and Aldehydes. Science 2013, 339, 1593. <https://doi.org/10.1126/science.1232993>
  • Hu Jie, Wang Jiang, Nguyen Theresa H, Zheng Nan: The chemistry of amine radical cations produced by visible light photoredox catalysis. Beilstein J. Org. Chem. 2013, 9, 1977. <https://doi.org/10.3762/bjoc.9.234>
  • Yu Jian, Zhang Ling, Yan Guobing: Metal‐Free, Visible Light‐Induced Borylation of Aryldiazonium Salts: A Simple and Green Synthetic Route to Arylboronates. Adv Synth Catal 2012, 354, 2625. <https://doi.org/10.1002/adsc.201200416>
  • Xiao Tiebo, Dong Xichang, Tang Yanchi, Zhou Lei: Phenanthrene Synthesis by Eosin Y‐Catalyzed, Visible Light‐ Induced [4+2] Benzannulation of Biaryldiazonium Salts with Alkynes. Adv Synth Catal 2012, 354, 3195. <https://doi.org/10.1002/adsc.201200569>
  • Yasu Yusuke, Koike Takashi, Akita Munetaka: Visible Light‐Induced Selective Generation of Radicals from Organoborates by Photoredox Catalysis. Adv Synth Catal 2012, 354, 3414. <https://doi.org/10.1002/adsc.201200588>
  • Cherevatskaya Maria, Neumann Matthias, Füldner Stefan, Harlander Christoph, Kümmel Susanne, Dankesreiter Stephan, Pfitzner Arno, Zeitler Kirsten, König Burkhard: Stereoselektive Alkylierung mit sichtbarem Licht durch Kombination von heterogener Photokatalyse mit Organokatalyse. Angewandte Chemie 2012, 124, 4138. <https://doi.org/10.1002/ange.201108721>
  • Xuan Jun, Xiao Wen‐Jing: Photoredoxkatalyse mit sichtbarem Licht. Angewandte Chemie 2012, 124, 6934. <https://doi.org/10.1002/ange.201200223>
  • Andrews R. Stephen, Becker Jennifer J., Gagné Michel R.: A Photoflow Reactor for the Continuous Photoredox‐Mediated Synthesis of C‐Glycoamino Acids and C‐Glycolipids. Angewandte Chemie 2012, 124, 4216. <https://doi.org/10.1002/ange.201200593>
  • Tucker Joseph W., Zhang Yuan, Jamison Timothy F., Stephenson Corey R. J.: Visible‐Light Photoredox Catalysis in Flow. Angewandte Chemie 2012, 124, 4220. <https://doi.org/10.1002/ange.201200961>
  • Cai Shunyou, Zhao Xinyang, Wang Xinbo, Liu Qisong, Li Zigang, Wang David Zhigang: Visible‐Light‐Promoted CC Bond Cleavage: Photocatalytic Generation of Iminium Ions and Amino Radicals. Angewandte Chemie 2012, 124, 8174. <https://doi.org/10.1002/ange.201202880>
  • Kim Hyejin, Lee Chulbom: Visible‐Light‐Induced Photocatalytic Reductive Transformations of Organohalides. Angewandte Chemie 2012, 124, 12469. <https://doi.org/10.1002/ange.201203599>
  • Lu Zhan, Yoon Tehshik P.: Visible Light Photocatalysis of [2+2] Styrene Cycloadditions by Energy Transfer. Angewandte Chemie 2012, 124, 10475. <https://doi.org/10.1002/ange.201204835>
  • Schnermann Martin J., Overman Larry E.: A Concise Synthesis of (−)‐Aplyviolene Facilitated by a Strategic Tertiary Radical Conjugate Addition. Angewandte Chemie 2012, 124, 9714. <https://doi.org/10.1002/ange.201204977>
  • Yasu Yusuke, Koike Takashi, Akita Munetaka: Three‐component Oxytrifluoromethylation of Alkenes: Highly Efficient and Regioselective Difunctionalization of CC Bonds Mediated by Photoredox Catalysts. Angewandte Chemie 2012, 124, 9705. <https://doi.org/10.1002/ange.201205071>
  • Maity Soumitra, Zheng Nan: A Visible‐Light‐Mediated Oxidative CN Bond Formation/Aromatization Cascade: Photocatalytic Preparation of N‐Arylindoles. Angewandte Chemie 2012, 124, 9700. <https://doi.org/10.1002/ange.201205137>
  • Cherevatskaya Maria, Neumann Matthias, Füldner Stefan, Harlander Christoph, Kümmel Susanne, Dankesreiter Stephan, Pfitzner Arno, Zeitler Kirsten, König Burkhard: Visible‐Light‐Promoted Stereoselective Alkylation by Combining Heterogeneous Photocatalysis with Organocatalysis. Angew Chem Int Ed 2012, 51, 4062. <https://doi.org/10.1002/anie.201108721>
  • Xuan Jun, Xiao Wen‐Jing: Visible‐Light Photoredox Catalysis. Angew Chem Int Ed 2012, 51, 6828. <https://doi.org/10.1002/anie.201200223>
  • Andrews R. Stephen, Becker Jennifer J., Gagné Michel R.: A Photoflow Reactor for the Continuous Photoredox‐Mediated Synthesis of C‐Glycoamino Acids and C‐Glycolipids. Angew Chem Int Ed 2012, 51, 4140. <https://doi.org/10.1002/anie.201200593>
  • Tucker Joseph W., Zhang Yuan, Jamison Timothy F., Stephenson Corey R. J.: Visible‐Light Photoredox Catalysis in Flow. Angew Chem Int Ed 2012, 51, 4144. <https://doi.org/10.1002/anie.201200961>
  • Cai Shunyou, Zhao Xinyang, Wang Xinbo, Liu Qisong, Li Zigang, Wang David Zhigang: Visible‐Light‐Promoted CC Bond Cleavage: Photocatalytic Generation of Iminium Ions and Amino Radicals. Angew Chem Int Ed 2012, 51, 8050. <https://doi.org/10.1002/anie.201202880>
  • Kim Hyejin, Lee Chulbom: Visible‐Light‐Induced Photocatalytic Reductive Transformations of Organohalides. Angew Chem Int Ed 2012, 51, 12303. <https://doi.org/10.1002/anie.201203599>
  • Lu Zhan, Yoon Tehshik P.: Visible Light Photocatalysis of [2+2] Styrene Cycloadditions by Energy Transfer. Angew Chem Int Ed 2012, 51, 10329. <https://doi.org/10.1002/anie.201204835>
  • Schnermann Martin J., Overman Larry E.: A Concise Synthesis of (−)‐Aplyviolene Facilitated by a Strategic Tertiary Radical Conjugate Addition. Angew Chem Int Ed 2012, 51, 9576. <https://doi.org/10.1002/anie.201204977>
  • Yasu Yusuke, Koike Takashi, Akita Munetaka: Three‐component Oxytrifluoromethylation of Alkenes: Highly Efficient and Regioselective Difunctionalization of CC Bonds Mediated by Photoredox Catalysts. Angew Chem Int Ed 2012, 51, 9567. <https://doi.org/10.1002/anie.201205071>
  • Maity Soumitra, Zheng Nan: A Visible‐Light‐Mediated Oxidative CN Bond Formation/Aromatization Cascade: Photocatalytic Preparation of N‐Arylindoles. Angew Chem Int Ed 2012, 51, 9562. <https://doi.org/10.1002/anie.201205137>
  • Courant Thibaut, Masson Géraldine: Photoredox‐Initiated α‐Alkylation of Imines through a Three‐Component Radical/Cationic Reaction. Chemistry A European J 2012, 18, 423. <https://doi.org/10.1002/chem.201103062>
  • Rueping Magnus, Zoller Jochen, Fabry David C., Poscharny Konstantin, Koenigs René M., Weirich Thomas E., Mayer Joachim: Light‐Mediated Heterogeneous Cross Dehydrogenative Coupling Reactions: Metal Oxides as Efficient, Recyclable, Photoredox Catalysts in CC Bond‐Forming Reactions. Chemistry A European J 2012, 18, 3478. <https://doi.org/10.1002/chem.201103242>
  • Rueping Magnus, Koenigs René M., Poscharny Konstantin, Fabry David C., Leonori Daniele, Vila Carlos: Dual Catalysis: Combination of Photocatalytic Aerobic Oxidation and Metal Catalyzed Alkynylation Reactions—CC Bond Formation Using Visible Light. Chemistry A European J 2012, 18, 5170. <https://doi.org/10.1002/chem.201200050>
  • Pirtsch Michael, Paria Suva, Matsuno Taisuke, Isobe Hiroyuki, Reiser Oliver: [Cu(dap)2Cl] As an Efficient Visible‐Light‐Driven Photoredox Catalyst in Carbon–Carbon Bond‐Forming Reactions. Chemistry A European J 2012, 18, 7336. <https://doi.org/10.1002/chem.201200967>
  • Miyake Yoshihiro, Nakajima Kazunari, Nishibayashi Yoshiaki: Direct sp3 CH Amination of Nitrogen‐Containing Benzoheterocycles Mediated by Visible‐Light‐Photoredox Catalysts. Chemistry A European J 2012, 18, 16473. <https://doi.org/10.1002/chem.201203066>
  • Hoffmann Norbert: Homogeneous Photocatalytic Reactions with Organometallic and Coordination Compounds—Perspectives for Sustainable Chemistry. ChemSusChem 2012, 5, 352. <https://doi.org/10.1002/cssc.201100286>
  • Schroll Peter, Hari Durga Prasad, König Burkhard: Photocatalytic Arylation of Alkenes, Alkynes and Enones with Diazonium Salts. ChemistryOpen 2012, 1, 130. <https://doi.org/10.1002/open.201200011>
  • Hamdy Mohamed S., Scott Elinor L., Carr Robert H., Sanders Johan P. M.: A Novel Photocatalytic Conversion of Tryptophan to Kynurenine Using Black Light as a Light Source. Catal Lett 2012, 142, 338. <https://doi.org/10.1007/s10562-012-0775-7>
  • Zou You-Quan, Duan Shu-Wen, Meng Xiang-Gao, Hu Xiao-Qiang, Gao Shuang, Chen Jia-Rong, Xiao Wen-Jing: Visible light induced intermolecular [2+2]-cycloaddition reactions of 3-ylideneoxindoles through energy transfer pathway. Tetrahedron 2012, 68, 6914. <https://doi.org/10.1016/j.tet.2012.06.011>
  • Lin Shishi, Padilla Christian E., Ischay Michael A., Yoon Tehshik P.: Visible light photocatalysis of intramolecular radical cation Diels–Alder cycloadditions. Tetrahedron Letters 2012, 53, 3073. <https://doi.org/10.1016/j.tetlet.2012.04.021>
  • Rueping Magnus, Vila Carlos, Szadkowska Anna, Koenigs Rene M., Fronert Jeanne: Photoredox Catalysis as an Efficient Tool for the Aerobic Oxidation of Amines and Alcohols: Bioinspired Demethylations and Condensations. ACS Catal. 2012, 2, 2810. <https://doi.org/10.1021/cs300604k>
  • Guillo Pascal, Hamelin Olivier, Batat Pinar, Jonusauskas Gediminas, McClenaghan Nathan D., Ménage Stéphane: Photocatalyzed Sulfide Oxygenation with Water as the Unique Oxygen Atom Source. Inorg. Chem. 2012, 51, 2222. <https://doi.org/10.1021/ic2022159>
  • Miyake Yoshihiro, Nakajima Kazunari, Nishibayashi Yoshiaki: Visible-Light-Mediated Utilization of α-Aminoalkyl Radicals: Addition to Electron-Deficient Alkenes Using Photoredox Catalysts. J. Am. Chem. Soc. 2012, 134, 3338. <https://doi.org/10.1021/ja211770y>
  • Hari Durga Prasad, Schroll Peter, König Burkhard: Metal-Free, Visible-Light-Mediated Direct C–H Arylation of Heteroarenes with Aryl Diazonium Salts. J. Am. Chem. Soc. 2012, 134, 2958. <https://doi.org/10.1021/ja212099r>
  • Wallentin Carl-Johan, Nguyen John D., Finkbeiner Peter, Stephenson Corey R. J.: Visible Light-Mediated Atom Transfer Radical Addition via Oxidative and Reductive Quenching of Photocatalysts. J. Am. Chem. Soc. 2012, 134, 8875. <https://doi.org/10.1021/ja300798k>
  • Tucker Joseph W., Stephenson Corey R. J.: Shining Light on Photoredox Catalysis: Theory and Synthetic Applications. J. Org. Chem. 2012, 77, 1617. <https://doi.org/10.1021/jo202538x>
  • Dai Chunhui, Meschini Francesco, Narayanam Jagan M. R., Stephenson Corey R. J.: Friedel–Crafts Amidoalkylation via Thermolysis and Oxidative Photocatalysis. J. Org. Chem. 2012, 77, 4425. <https://doi.org/10.1021/jo300162c>
  • Zhao Guolei, Yang Chao, Guo Lin, Sun Hongnan, Lin Run, Xia Wujiong: Reactivity Insight into Reductive Coupling and Aldol Cyclization of Chalcones by Visible Light Photocatalysis. J. Org. Chem. 2012, 77, 6302. <https://doi.org/10.1021/jo300796j>
  • Wang Zhi-Qiang, Hu Ming, Huang Xiao-Cheng, Gong Lu-Bing, Xie Ye-Xiang, Li Jin-Heng: Direct α-Arylation of α-Amino Carbonyl Compounds with Indoles Using Visible Light Photoredox Catalysis. J. Org. Chem. 2012, 77, 8705. <https://doi.org/10.1021/jo301691h>
  • Hering Thea, Hari Durga Prasad, König Burkhard: Visible-Light-Mediated α-Arylation of Enol Acetates Using Aryl Diazonium Salts. J. Org. Chem. 2012, 77, 10347. <https://doi.org/10.1021/jo301984p>
  • Kohls Paul, Jadhav Deepak, Pandey Ganesh, Reiser Oliver: Visible Light Photoredox Catalysis: Generation and Addition of N-Aryltetrahydroisoquinoline-Derived α-Amino Radicals to Michael Acceptors. Org. Lett. 2012, 14, 672. <https://doi.org/10.1021/ol202857t>
  • Freeman David B., Furst Laura, Condie Allison G., Stephenson Corey R. J.: Functionally Diverse Nucleophilic Trapping of Iminium Intermediates Generated Utilizing Visible Light. Org. Lett. 2012, 14, 94. <https://doi.org/10.1021/ol202883v>
  • Cheng Yannan, Yang Jun, Qu Yue, Li Pixu: Aerobic Visible-Light Photoredox Radical C–H Functionalization: Catalytic Synthesis of 2-Substituted Benzothiazoles. Org. Lett. 2012, 14, 98. <https://doi.org/10.1021/ol2028866>
  • Tyson Elizabeth L., Farney Elliot P., Yoon Tehshik P.: Photocatalytic [2 + 2] Cycloadditions of Enones with Cleavable Redox Auxiliaries. Org. Lett. 2012, 14, 1110. <https://doi.org/10.1021/ol3000298>
  • Parrish Jonathan D., Ischay Michael A., Lu Zhan, Guo Song, Peters Noël R., Yoon Tehshik P.: Endoperoxide Synthesis by Photocatalytic Aerobic [2 + 2 + 2] Cycloadditions. Org. Lett. 2012, 14, 1640. <https://doi.org/10.1021/ol300428q>
  • Neumann Matthias, Zeitler Kirsten: Application of Microflow Conditions to Visible Light Photoredox Catalysis. Org. Lett. 2012, 14, 2658. <https://doi.org/10.1021/ol3005529>
  • Yoon Hyo-Sang, Ho Xuan-Huong, Jang Jiyeon, Lee Hwa-Jung, Kim Seung-Joo, Jang Hye-Young: N719 Dye-Sensitized Organophotocatalysis: Enantioselective Tandem Michael Addition/Oxyamination of Aldehydes. Org. Lett. 2012, 14, 3272. <https://doi.org/10.1021/ol3011858>
  • Hari Durga Prasad, Hering Thea, König Burkhard: Visible Light Photocatalytic Synthesis of Benzothiophenes. Org. Lett. 2012, 14, 5334. <https://doi.org/10.1021/ol302517n>
  • Zhao Guolei, Yang Chao, Guo Lin, Sun Hongnan, Chen Chao, Xia Wujiong: Visible light-induced oxidative coupling reaction: easy access to Mannich-type products. Chem Commn 2012, 48, 2337. <https://doi.org/10.1039/c2cc17130a>
  • Yasu Yusuke, Koike Takashi, Akita Munetaka: Sunlight-driven synthesis of γ-diketones via oxidative coupling of enamines with silyl enol ethers catalyzed by [Ru(bpy)3]2+. Chem Commn 2012, 48, 5355. <https://doi.org/10.1039/c2cc31748f>
  • Miyake Yoshihiro, Ashida Yuya, Nakajima Kazunari, Nishibayashi Yoshiaki: Visible-light-mediated addition of α-aminoalkyl radicals generated from α-silylamines to α,β-unsaturated carbonyl compounds. Chem. Commun. 2012, 48, 6966. <https://doi.org/10.1039/c2cc32745g>
  • Chen Min, Huang Zhi-Tang, Zheng Qi-Yu: Visible light-induced 3-sulfenylation of N-methylindoles with arylsulfonyl chlorides. Chem. Commun. 2012, 48, 11686. <https://doi.org/10.1039/c2cc36866h>
  • Zhu Shaoqun, Rueping Magnus: Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides. Chem. Commun. 2012, 48, 11960. <https://doi.org/10.1039/c2cc36995h>
  • Shi Lei, Xia Wujiong: Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem. Soc. Rev. 2012, 41, 7687. <https://doi.org/10.1039/c2cs35203f>
  • Mitkina Tatiana, Stanglmair Christoph, Setzer Wolfgang, Gruber Michael, Kisch Horst, König Burkhard: Visible light mediated homo- and heterocoupling of benzyl alcohols and benzyl amines on polycrystalline cadmium sulfide. Biomol Chem 2012, 10, 3556. <https://doi.org/10.1039/c2ob07053g>
  • Hoffmann Norbert: Photochemical reactions of aromatic compounds and the concept of the photon as a traceless reagent. Photochem Photobiol Sci 2012, 11, 1613. <https://doi.org/10.1039/c2pp25074h>
  • Xuan Jun, Feng Zhu-Jia, Duan Shu-Wen, Xiao Wen-Jing: Room temperature synthesis of isoquino[2,1-a][3,1]oxazine and isoquino[2,1-a]pyrimidine derivatives via visible light photoredox catalysis. RSC Adv 2012, 2, 4065. <https://doi.org/10.1039/c2ra20403g>
  • Ischay Michael A., Ament Michael S., Yoon Tehshik P.: Crossed intermolecular [2 + 2] cycloaddition of styrenes by visible light photocatalysis. Chem. Sci. 2012, 3, 2807. <https://doi.org/10.1039/c2sc20658g>
  • Koike Takashi, Yasu Yusuke, Akita Munetaka: Visible-light-driven Oxidation of 1,3-Dicarbonyl Compounds via Catalytic Disproportionation of TEMPO by Photoredox Catalysis. Chemistry Letters 2012, 41, 999. <https://doi.org/10.1246/cl.2012.999>
  • Gaikwad A. G.: Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bull. Chem. React. Eng. Catal. 2012, 7, 49. <https://doi.org/10.9767/bcrec.7.1.1225.49-57>
  • Tucker Joseph W., Stephenson Corey R. J.: Tandem Visible Light-Mediated Radical Cyclization–Divinylcyclopropane Rearrangement to Tricyclic Pyrrolidinones. Org. Lett. 2011, 13, 5468. <https://doi.org/10.1021/ol202178t>
  • Rueping Magnus, Zhu Shaoqun, Koenigs René M.: Visible-light photoredox catalyzed oxidative Strecker reaction. Chem Commn 2011, 47, 12709. <https://doi.org/10.1039/c1cc15643h>