Collect. Czech. Chem. Commun. 2005, 70, 837-850
https://doi.org/10.1135/cccc20050837

Frozen Natural Orbitals: Systematic Basis Set Truncation for Coupled-Cluster Theory

Andrew G. Taube and Rodney J. Bartlett*

Department of Chemistry, University of Florida, Quantum Theory Project, Gainesville, FL 32611, U.S.A.

References

1. Stolevik R., Rademacher P.: Acta Phys. Scand. 1969, 23, 672. <https://doi.org/10.3891/acta.chem.scand.23-0672>
2. Krebs B., Mandt J.: Acta Crystallogr. B: Struct. Crystallogr. Cryst. Chem. 1979, 35, 402. <https://doi.org/10.1107/S0567740879003630>
3. Khaikin L., Grikina O., Vilkov L., Palafox M., Boggs J.: J. Struct. Chem. 1993, 34, 2. <https://doi.org/10.1007/BF00745394>
4. Smith G. D., Bharadwaj R. K., Bedrov D., Ayyagari C.: J. Phys. Chem. B 1999, 103, 705. <https://doi.org/10.1021/jp9834006>
5. Johnson M. A., Truong T. N.: J. Phys. Chem. A 1999, 103, 8840. <https://doi.org/10.1021/jp9925029>
6. Harris N. J., Lammertsma K.: J. Phys. Chem. A 1997, 101, 1370. <https://doi.org/10.1021/jp962326t>
7. Hariharan P., Pople J.: Theor. Chim. Acta 1973, 28, 213. <https://doi.org/10.1007/BF00533485>
8. Dunning T., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
9. Adams G. F., Robert J., Shaw W.: Annu. Rev. Phys. Chem. 1992, 43, 311. <https://doi.org/10.1146/annurev.pc.43.100192.001523>
10. Bukowski R., Szalewicz K., Chabalowski C. F.: J. Phys. Chem. A 1999 103, 7322. <https://doi.org/10.1021/jp991212p>
11. Rice B. M., Chabalowski C. F.: J. Phys. Chem. A 1997, 101, 8720. <https://doi.org/10.1021/jp972062q>
12. Harris N. J., Lammertsma K.: J. Am. Chem. Soc. 1997, 119, 6583. <https://doi.org/10.1021/ja970392i>
13. Chakraborty D., Muller R. P., Dasgupta S., Goddard W. A., III: J. Phys. Chem. A 2000, 104, 2261. <https://doi.org/10.1021/jp9936953>
14. Raghavachari K., Trucks G., Pople J., Head-Gordon M.: Chem. Phys. Lett. 1989, 157, 479. <https://doi.org/10.1016/S0009-2614(89)87395-6>
15. Purvis G. D., Bartlett R. J.: J. Chem. Phys. 1982, 76, 1910. <https://doi.org/10.1063/1.443164>
16. Watts J. D., Gauss J., Bartlett R. J.: J. Chem. Phys. 1993, 98, 8718. <https://doi.org/10.1063/1.464480>
17. Hampel C., Werner H.-J.: J. Chem. Phys. 1996, 104, 6286. <https://doi.org/10.1063/1.471289>
18. Flocke N., Bartlett R. J.: J. Chem. Phys. 2004, 121, 10935. <https://doi.org/10.1063/1.1811606>
19. Koch H., Sáchez de Merás A., Pederson T. B.: J. Chem. Phys. 2003, 118, 9481. <https://doi.org/10.1063/1.1578621>
20. Kinoshita T., Hino O., Bartlett R. J.: J. Chem. Phys. 2003, 119, 7756. <https://doi.org/10.1063/1.1609442>
21. Hino O., Kinoshita T., Bartlett R. J.: J. Chem. Phys. 2004, 121, 1206. <https://doi.org/10.1063/1.1763575>
22. Klopper W., Kutzelnigg W.: Chem. Phys. Lett. 1987, 134, 17. <https://doi.org/10.1016/0009-2614(87)80005-2>
23. Kutzelnigg W., Klopper W.: J. Chem. Phys. 1991, 94, 1985. <https://doi.org/10.1063/1.459921>
24. Klopper W., Kutzelnigg W.: J. Chem. Phys. 1991, 94, 2020. <https://doi.org/10.1063/1.459923>
25. Wilson K. J.: Ph.D. Thesis. University of Florida, Gainesville (FL) 2002.
26. Sosa C., Geertsen J., Trucks G. W., Bartlett R. J., Franz J. A.: Chem. Phys. Lett. 1989, 159, 148. <https://doi.org/10.1016/0009-2614(89)87399-3>
27. Adamowicz L., Bartlett R. J.: J. Chem. Phys. 1987, 86, 6314. <https://doi.org/10.1063/1.452468>
28. Adamowicz L., Bartlett R. J., Sadlej A. J.: J. Chem. Phys. 1988, 88, 5749. <https://doi.org/10.1063/1.454721>
29. Mintz B., Lennox K. P., Wilson A. K.: J. Chem. Phys. 2004, 121, 5629. <https://doi.org/10.1063/1.1785145>
30. Löwdin P.-O.: Phys. Rev. 1955, 97, 1474. <https://doi.org/10.1103/PhysRev.97.1474>
31. White S. R.: Phys. Rep. 1998, 301, 187. <https://doi.org/10.1016/S0370-1573(98)00010-6>
32. In terms of truncation techniques. For an example of the use of CC NOs in other methods see: Abrams M. L., Sherill C. D.: Chem. Phys. Lett. 2004, 395, 227. <https://doi.org/10.1016/j.cplett.2004.07.081>
33. Jørgen H., Jensen A., Jørgensen P., Ågren H., Olsen J.: J. Chem. Phys. 1988, 88, 3834.
34. Meyer W. in: Methods of Electronic Structure (H. F. Schaefer, III, Ed.), p. 413. Plenum Press, New York 1977.
35. Barr T. L., Davidson E. R.: Phys. Rev. A 1970, 1, 644. <https://doi.org/10.1103/PhysRevA.1.644>
36. Meyer W.: J. Chem. Phys. 1973, 58, 1017. <https://doi.org/10.1063/1.1679283>
37. Hay P. J.: J. Chem. Phys. 1973, 59, 2468. <https://doi.org/10.1063/1.1680359>
38. Ahlrichs R., Lischka H., Staemmler V., Kutzelnigg W.: J. Chem. Phys. 1975, 62, 1225. <https://doi.org/10.1063/1.430637>
39. Edmiston C., Krauss M.: J. Chem. Phys. 1966, 45, 1833. <https://doi.org/10.1063/1.1727841>
40. Ahlrichs R., Kutzelnigg W.: Theor. Chim. Acta 1968, 10, 377. <https://doi.org/10.1007/BF00528769>
41. Gelus M., Ahlrichs R., Staemmler V., Kutzelnigg W.: Chem. Phys. Lett. 1970, 7, 503. <https://doi.org/10.1016/0009-2614(70)80159-2>
42. Neogrády P., Pitoňák M., Urban M.: Mol. Phys., in press.
43. We just as easily can leave the orbitals as is due to the invariance of coupled-cluster theory to unitary rotations within, separately, the occupied and virtual space. However, the Fock matrix must be recalculated in either case and without the back-rotation one loses the simplicity of canonical HF.
44. ACES II is a program product of the Quantum Theory Project, University of Florida, Gainesville (FL) 1990. Authors: Stanton J. F., Gauss J., Perera S. A., Yau A., Watts J. D., Nooijen M., Oliphant N., Szalay P. G., Lauderdale W. J., Gwaltney S. R., Beck S., Balková A., Bernholdt D. E., Baeck K. K., Rozyczko P., Sekino H., Huber C., Pittner J., Bartlett R. J.. Integral packages included are VMOL (Almlöf J., Taylor P. R.); VPROPS (Taylor P.); ABACUS (Helgaker T., Jensen H. J. Aa., Jørgensen P., Olsen J., Taylor P. R.).
45. Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352, U.S.A., and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller, Karen Schuchardt, or Don Jones for further information.
46. Dunning T., Jr.: J. Am. Chem. Soc. 1979, 101, 2856.
47. Taube A. G., Bartlett R. J.: Unpublished results.