Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2005, 70, 837-850
https://doi.org/10.1135/cccc20050837

Frozen Natural Orbitals: Systematic Basis Set Truncation for Coupled-Cluster Theory

Andrew G. Taube and Rodney J. Bartlett*

Department of Chemistry, University of Florida, Quantum Theory Project, Gainesville, FL 32611, U.S.A.

Crossref Cited-by Linking

  • Deraet Xavier, Çilesiz Umut, Aviyente Viktorya, De Proft Frank: Structural and energetic properties of cluster models of anatase-supported single late transition metal atoms: a density functional theory benchmark study. J Mol Model 2024, 30. <https://doi.org/10.1007/s00894-024-06173-y>
  • Nandi Apurba, Nagy Péter R.: Combining state-of-the-art quantum chemistry and machine learning make gold standard potential energy surfaces accessible for medium-sized molecules. Artificial Intelligence Chemistry 2024, 2, 100036. <https://doi.org/10.1016/j.aichem.2023.100036>
  • Pollice Robert, Ding Benjamin, Aspuru-Guzik Alán: Rational design of organic molecules with inverted gaps between the first excited singlet and triplet. Matter 2024, 7, 1161. <https://doi.org/10.1016/j.matt.2024.01.002>
  • Li Chenyang, Mao Shuxian, Huang Renke, Evangelista Francesco A.: Frozen Natural Orbitals for the State-Averaged Driven Similarity Renormalization Group. J. Chem. Theory Comput. 2024, 20, 4170. <https://doi.org/10.1021/acs.jctc.4c00152>
  • Mester Dávid, Nagy Péter R., Kállay Mihály: Basis-Set Limit CCSD(T) Energies for Large Molecules with Local Natural Orbitals and Reduced-Scaling Basis-Set Corrections. J. Chem. Theory Comput. 2024, 20, 7453. <https://doi.org/10.1021/acs.jctc.4c00777>
  • Paveliuc Gheorghe, Lawson Daku Latévi Max: Improving the Accuracy in the Prediction of Transition-Metal Spin-State Energetics Using a Robust Variation-Based Approach: Density Functional Theory, CASPT2 and MC-PDFT Applied to the Case Study of Tris-Diimine Fe(II) Complexes. J. Phys. Chem. A 2024, 128, 8404. <https://doi.org/10.1021/acs.jpca.4c04148>
  • Lőrincz Balázs D., Nagy Péter R.: Advancing Non-Atom-Centered Basis Methods for More Accurate Interaction Energies: Benchmarks and Large-Scale Applications. J. Phys. Chem. A 2024, 128, 10282. <https://doi.org/10.1021/acs.jpca.4c04689>
  • Gwaltney Steven R.: Extending the Perturbative Triples Correction in Coupled-Cluster Theory to Account for Inactive Orbitals. J. Phys. Chem. A 2024, 128, 9055. <https://doi.org/10.1021/acs.jpca.4c04910>
  • Jangid Bhavnesh, Hermes Matthew R., Gagliardi Laura: Core Binding Energy Calculations: A Scalable Approach with the Quantum Embedding-Based Equation-of-Motion Coupled-Cluster Method. J. Phys. Chem. Lett. 2024, 15, 5954. <https://doi.org/10.1021/acs.jpclett.4c00957>
  • Liao Ke, Ding Lexin, Schilling Christian: Quantum Information Orbitals (QIO): Unveiling Intrinsic Many-Body Complexity by Compressing Single-Body Triviality. J. Phys. Chem. Lett. 2024, 15, 6782. <https://doi.org/10.1021/acs.jpclett.4c01105>
  • Bartlett Rodney J.: Perspective on Coupled-cluster Theory. The evolution toward simplicity in quantum chemistry. Phys. Chem. Chem. Phys. 2024, 26, 8013. <https://doi.org/10.1039/D3CP03853J>
  • Pokhilko Pavel, Yeh Chia-Nan, Morales Miguel A., Zgid Dominika: Tensor hypercontraction for fully self-consistent imaginary-time GF2 and GWSOX methods: Theory, implementation, and role of the Green’s function second-order exchange for intermolecular interactions. The Journal of Chemical Physics 2024, 161. <https://doi.org/10.1063/5.0215954>
  • Materia Davide, Ratini Leonardo, Angeli Celestino, Guidoni Leonardo: Quantum information reveals that orbital-wise correlation is essentially classical in natural orbitals. The Journal of Chemical Physics 2024, 161. <https://doi.org/10.1063/5.0220306>
  • Horváth Réka A., Kállay Mihály: Basis set limit MP2 energies for extended molecules via a reduced-cost explicitly correlated approach. Molecular Physics 2024, 122. <https://doi.org/10.1080/00268976.2024.2304103>
  • Kállay Mihály, Horváth Réka A., Gyevi-Nagy László, Nagy Péter R.: Basis Set Limit CCSD(T) Energies for Extended Molecules via a Reduced-Cost Explicitly Correlated Approach. J. Chem. Theory Comput. 2023, 19, 174. <https://doi.org/10.1021/acs.jctc.2c01031>
  • Banerjee Samragni, Sokolov Alexander Yu.: Algebraic Diagrammatic Construction Theory for Simulating Charged Excited States and Photoelectron Spectra. J. Chem. Theory Comput. 2023, 19, 3037. <https://doi.org/10.1021/acs.jctc.3c00251>
  • Yuan Xiang, Halbert Loïc, Visscher Lucas, Pereira Gomes André Severo: Frequency-Dependent Quadratic Response Properties and Two-Photon Absorption from Relativistic Equation-of-Motion Coupled Cluster Theory. J. Chem. Theory Comput. 2023, 19, 9248. <https://doi.org/10.1021/acs.jctc.3c01011>
  • Nykänen Anton, Miller Aaron, Talarico Walter, Knecht Stefan, Kovyrshin Arseny, Skogh Mårten, Tornberg Lars, Broo Anders, Mensa Stefano, Symons Benjamin C. B., Sahin Emre, Crain Jason, Tavernelli Ivano, Pavošević Fabijan: Toward Accurate Post-Born–Oppenheimer Molecular Simulations on Quantum Computers: An Adaptive Variational Eigensolver with Nuclear-Electronic Frozen Natural Orbitals. J. Chem. Theory Comput. 2023, 19, 9269. <https://doi.org/10.1021/acs.jctc.3c01091>
  • Mukhopadhyay Tamoghna, Jangid Bhavnesh, Dutta Achintya Kumar: State-specific frozen natural orbital for reduced-cost algebraic diagrammatic construction calculations: The application to ionization problem. The Journal of Chemical Physics 2023, 159. <https://doi.org/10.1063/5.0160024>
  • Nagy Péter R., Gyevi-Nagy László, Lőrincz Balázs D., Kállay Mihály: Pursuing the basis set limit of CCSD(T) non-covalent interaction energies for medium-sized complexes: case study on the S66 compilation. Molecular Physics 2023, 121. <https://doi.org/10.1080/00268976.2022.2109526>
  • Bozkaya Uğur, Ermiş Betül: Linear-Scaling Systematic Molecular Fragmentation Approach for Perturbation Theory and Coupled-Cluster Methods. J. Chem. Theory Comput. 2022, 18, 5349. <https://doi.org/10.1021/acs.jctc.2c00587>
  • Reese Diana L., Steele Ryan P.: Molecular Motion in the Interconverting σ-H2, Di-, and Tri-hydride Regimes: Mo(PH3)5H2. J. Phys. Chem. A 2022, 126, 6834. <https://doi.org/10.1021/acs.jpca.2c03397>
  • Laughon Katelyn, Yu Jason M., Zhu Tianyu: Periodic Coupled-Cluster Green’s Function for Photoemission Spectra of Realistic Solids. J. Phys. Chem. Lett. 2022, 13, 9122. <https://doi.org/10.1021/acs.jpclett.2c02534>
  • Anand Abhinav, Schleich Philipp, Alperin-Lea Sumner, Jensen Phillip W. K., Sim Sukin, Díaz-Tinoco Manuel, Kottmann Jakob S., Degroote Matthias, Izmaylov Artur F., Aspuru-Guzik Alán: A quantum computing view on unitary coupled cluster theory. Chem. Soc. Rev. 2022, 51, 1659. <https://doi.org/10.1039/D1CS00932J>
  • Bozkaya Uğur, Ermiş Betül, Alagöz Yavuz, Ünal Aslı, Uyar Ali Kaan: MacroQC 1.0: An electronic structure theory software for large-scale applications. The Journal of Chemical Physics 2022, 156. <https://doi.org/10.1063/5.0077823>
  • Chamoli Somesh, Surjuse Kshitijkumar, Jangid Bhavnesh, Nayak Malaya K., Dutta Achintya Kumar: A reduced cost four-component relativistic coupled cluster method based on natural spinors. The Journal of Chemical Physics 2022, 156. <https://doi.org/10.1063/5.0085932>
  • Yuan Xiang, Visscher Lucas, Gomes André Severo Pereira: Assessing MP2 frozen natural orbitals in relativistic correlated electronic structure calculations. The Journal of Chemical Physics 2022, 156. <https://doi.org/10.1063/5.0087243>
  • Aldossary Abdulrahman, Head-Gordon Martin: Non-iterative method for constructing valence antibonding molecular orbitals and a molecule-adapted minimum basis. The Journal of Chemical Physics 2022, 157. <https://doi.org/10.1063/5.0095443>
  • Surjuse Kshitijkumar, Chamoli Somesh, Nayak Malaya K., Dutta Achintya Kumar: A low-cost four-component relativistic equation of motion coupled cluster method based on frozen natural spinors: Theory, implementation, and benchmark. The Journal of Chemical Physics 2022, 157. <https://doi.org/10.1063/5.0125868>
  • Gonthier Jérôme F., Radin Maxwell D., Buda Corneliu, Doskocil Eric J., Abuan Clena M., Romero Jhonathan: Measurements as a roadblock to near-term practical quantum advantage in chemistry: Resource analysis. Phys. Rev. Research 2022, 4. <https://doi.org/10.1103/PhysRevResearch.4.033154>
  • Pollice Robert, Friederich Pascal, Lavigne Cyrille, Gomes Gabriel dos Passos, Aspuru-Guzik Alán: Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates. Matter 2021, 4, 1654. <https://doi.org/10.1016/j.matt.2021.02.017>
  • Calvin Justus A., Peng Chong, Rishi Varun, Kumar Ashutosh, Valeev Edward F.: Many-Body Quantum Chemistry on Massively Parallel Computers. Chem. Rev. 2021, 121, 1203. <https://doi.org/10.1021/acs.chemrev.0c00006>
  • Gyevi-Nagy László, Kállay Mihály, Nagy Péter R.: Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. J. Chem. Theory Comput. 2021, 17, 860. <https://doi.org/10.1021/acs.jctc.0c01077>
  • Lesiuk Michał: Near-Exact CCSDT Energetics from Rank-Reduced Formalism Supplemented by Non-iterative Corrections. J. Chem. Theory Comput. 2021, 17, 7632. <https://doi.org/10.1021/acs.jctc.1c00933>
  • Irmler Andreas, Gallo Alejandro, Grüneis Andreas: Focal-point approach with pair-specific cusp correction for coupled-cluster theory. The Journal of Chemical Physics 2021, 154. <https://doi.org/10.1063/5.0050054>
  • Verma Prakash, Huntington Lee, Coons Marc P., Kawashima Yukio, Yamazaki Takeshi, Zaribafiyan Arman: Scaling up electronic structure calculations on quantum computers: The frozen natural orbital based method of increments. The Journal of Chemical Physics 2021, 155. <https://doi.org/10.1063/5.0054647>
  • Nagy Péter R., Gyevi-Nagy László, Kállay Mihály: Basis set truncation corrections for improved frozen natural orbital CCSD(T) energies. Molecular Physics 2021, 119. <https://doi.org/10.1080/00268976.2021.1963495>
  • Suliman Siba, Pitoňák Michal, Cernusak Ivan, Louis Florent: On the applicability of the MP2.5 approximation for open-shell systems. Case study of atmospheric reactivity. Computational and Theoretical Chemistry 2020, 1186, 112901. <https://doi.org/10.1016/j.comptc.2020.112901>
  • Lesiuk Michał: Implementation of the Coupled-Cluster Method with Single, Double, and Triple Excitations using Tensor Decompositions. J. Chem. Theory Comput. 2020, 16, 453. <https://doi.org/10.1021/acs.jctc.9b00985>
  • Pokhilko Pavel, Izmodenov Daniil, Krylov Anna I.: Extension of frozen natural orbital approximation to open-shell references: Theory, implementation, and application to single-molecule magnets. The Journal of Chemical Physics 2020, 152. <https://doi.org/10.1063/1.5138643>
  • Warden Constance E., Smith Daniel G. A., Burns Lori A., Bozkaya Uğur, Sherrill C. David: Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory. The Journal of Chemical Physics 2020, 152. <https://doi.org/10.1063/5.0004863>
  • Smith Daniel G. A., Burns Lori A., Simmonett Andrew C., Parrish Robert M., Schieber Matthew C., Galvelis Raimondas, Kraus Peter, Kruse Holger, Di Remigio Roberto, Alenaizan Asem, James Andrew M., Lehtola Susi, Misiewicz Jonathon P., Scheurer Maximilian, Shaw Robert A., Schriber Jeffrey B., Xie Yi, Glick Zachary L., Sirianni Dominic A., O’Brien Joseph Senan, Waldrop Jonathan M., Kumar Ashutosh, Hohenstein Edward G., Pritchard Benjamin P., Brooks Bernard R., Schaefer Henry F., Sokolov Alexander Yu., Patkowski Konrad, DePrince A. Eugene, Bozkaya Uğur, King Rollin A., Evangelista Francesco A., Turney Justin M., Crawford T. Daniel, Sherrill C. David: PSI4 1.4: Open-source software for high-throughput quantum chemistry. The Journal of Chemical Physics 2020, 152. <https://doi.org/10.1063/5.0006002>
  • Bartlett Rodney J., Park Young Choon, Bauman Nicholas P., Melnichuk Ann, Ranasinghe Duminda, Ravi Moneesha, Perera Ajith: Index of multi-determinantal and multi-reference character in coupled-cluster theory. The Journal of Chemical Physics 2020, 153. <https://doi.org/10.1063/5.0029339>
  • Lange Malte F., Berkelbach Timothy C.: Active space approaches combining coupled-cluster and perturbation theory for ground states and excited states. Molecular Physics 2020, 118. <https://doi.org/10.1080/00268976.2020.1808726>
  • Crawford T. Daniel, Kumar Ashutosh, Bazanté Alexandre P., Di Remigio Roberto: Reduced‐scaling coupled cluster response theory: Challenges and opportunities. WIREs Comput Mol Sci 2019, 9. <https://doi.org/10.1002/wcms.1406>
  • Melicherčík Miroslav, Suchá Denisa, Neogrády Pavel, Pitoňák Michal: Off‐center Gaussian functions: Applications toward larger basis sets, post‐second‐order correlation treatment, and truncated virtual orbital space in investigations of noncovalent interactions. Int J of Quantum Chemistry 2018, 118. <https://doi.org/10.1002/qua.25580>
  • Segarra-Martí J., Garavelli M., Aquilante F.: Converging many-body correlation energies by means of sequence extrapolation. The Journal of Chemical Physics 2018, 148. <https://doi.org/10.1063/1.5000783>
  • Claudino Daniel, Bartlett Rodney J.: Coupled-cluster based basis sets for valence correlation calculations. New primitives, frozen atomic natural orbitals, and basis sets from double to hextuple zeta for atoms H, He, and B–Ne. The Journal of Chemical Physics 2018, 149. <https://doi.org/10.1063/1.5039741>
  • Park Young Choon, Perera Ajith, Bartlett Rodney J.: Low scaling EOM-CCSD and EOM-MBPT(2) method with natural transition orbitals. The Journal of Chemical Physics 2018, 149. <https://doi.org/10.1063/1.5045340>
  • Dutta Achintya Kumar, Neese Frank, Izsák Róbert: Accelerating the coupled-cluster singles and doubles method using the chain-of-sphere approximation. Molecular Physics 2018, 116, 1428. <https://doi.org/10.1080/00268976.2017.1416201>
  • Labanc Daniel, Šulka Martin, Pitoňák Michal, Černušák Ivan, Urban Miroslav, Neogrády Pavel: Benchmark CCSD(T) and DFT study of binding energies in Be7 − 12: in search of reliable DFT functional for beryllium clusters. Molecular Physics 2018, 116, 1259. <https://doi.org/10.1080/00268976.2017.1420259>
  • Kaliman Ilya A., Krylov Anna I.: New algorithm for tensor contractions on multi-core CPUs, GPUs, and accelerators enables CCSD and EOM-CCSD calculations with over 1000 basis functions on a single compute node. J. Comput. Chem. 2017, 38, 842. <https://doi.org/10.1002/jcc.24713>
  • Yang Chong, Dreuw Andreas: Evaluation of the restricted virtual space approximation in the algebraic‐diagrammatic construction scheme for the polarization propagator to speed‐up excited‐state calculations. J Comput Chem 2017, 38, 1528. <https://doi.org/10.1002/jcc.24794>
  • Sirianni Dominic A., Burns Lori A., Sherrill C. David: Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions. J. Chem. Theory Comput. 2017, 13, 86. <https://doi.org/10.1021/acs.jctc.6b00797>
  • Parrish Robert M., Burns Lori A., Smith Daniel G. A., Simmonett Andrew C., DePrince A. Eugene, Hohenstein Edward G., Bozkaya Uğur, Sokolov Alexander Yu., Di Remigio Roberto, Richard Ryan M., Gonthier Jérôme F., James Andrew M., McAlexander Harley R., Kumar Ashutosh, Saitow Masaaki, Wang Xiao, Pritchard Benjamin P., Verma Prakash, Schaefer Henry F., Patkowski Konrad, King Rollin A., Valeev Edward F., Evangelista Francesco A., Turney Justin M., Crawford T. Daniel, Sherrill C. David: Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185. <https://doi.org/10.1021/acs.jctc.7b00174>
  • Kumar Ashutosh, Crawford T. Daniel: Frozen Virtual Natural Orbitals for Coupled-Cluster Linear-Response Theory. J. Phys. Chem. A 2017, 121, 708. <https://doi.org/10.1021/acs.jpca.6b11410>
  • Gonthier Jérôme F., Head-Gordon Martin: Compressed representation of dispersion interactions and long-range electronic correlations. The Journal of Chemical Physics 2017, 147. <https://doi.org/10.1063/1.4997186>
  • Aquilante Francesco, Delcey Mickaël G., Pedersen Thomas Bondo, Fdez. Galván Ignacio, Lindh Roland: Inner projection techniques for the low-cost handling of two-electron integrals in quantum chemistry. Molecular Physics 2017, 115, 2052. <https://doi.org/10.1080/00268976.2017.1284354>
  • Sánchez H.R., Pis Diez R.: Low cost estimation of the contribution of post-CCSD excitations to the total atomization energy using density functional theory calculations. Chemical Physics Letters 2016, 649, 68. <https://doi.org/10.1016/j.cplett.2016.02.040>
  • Řezáč Jan, Hobza Pavel: Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016, 116, 5038. <https://doi.org/10.1021/acs.chemrev.5b00526>
  • Chakraborty Rahul, Ghosh Debashree: The effect of sequence on the ionization of guanine in DNA. Phys. Chem. Chem. Phys. 2016, 18, 6526. <https://doi.org/10.1039/C5CP07804K>
  • Bozkaya Uğur, Sherrill C. David: Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation. The Journal of Chemical Physics 2016, 144. <https://doi.org/10.1063/1.4948318>
  • Byrd Jason N., Lutz Jesse J., Jin Yifan, Ranasinghe Duminda S., Montgomery John A., Perera Ajith, Duan Xiaofeng F., Burggraf Larry W., Sanders Beverly A., Bartlett Rodney J.: Predictive coupled-cluster isomer orderings for some SinCm (m, n ≤ 12) clusters: A pragmatic comparison between DFT and complete basis limit coupled-cluster benchmarks. The Journal of Chemical Physics 2016, 145. <https://doi.org/10.1063/1.4955196>
  • Gonthier Jérôme F., Sherrill C. David: Density-fitted open-shell symmetry-adapted perturbation theory and application to π-stacking in benzene dimer cation and ionized DNA base pair steps. The Journal of Chemical Physics 2016, 145. <https://doi.org/10.1063/1.4963385>
  • Řezáč Jan, Dubecký Matúš, Jurečka Petr, Hobza Pavel: Extensions and applications of the A24 data set of accurate interaction energies. Phys. Chem. Chem. Phys. 2015, 17, 19268. <https://doi.org/10.1039/C5CP03151F>
  • Matthews Devin A., Stanton John F.: Non-orthogonal spin-adaptation of coupled cluster methods: A new implementation of methods including quadruple excitations. The Journal of Chemical Physics 2015, 142. <https://doi.org/10.1063/1.4907278>
  • Gidofalvi Gergely, Brozell Scott R., Shepard Ron: Wave function analysis with Shavitt graph density in the graphically contracted function method. Theor Chem Acc 2014, 133. <https://doi.org/10.1007/s00214-014-1512-7>
  • Copan Andreas V., Sokolov Alexander Yu., Schaefer Henry F.: Benchmark Study of Density Cumulant Functional Theory: Thermochemistry and Kinetics. J. Chem. Theory Comput. 2014, 10, 2389. <https://doi.org/10.1021/ct5002895>
  • Gidofalvi Gergely, Mazziotti David A.: Molecule-Optimized Basis Sets and Hamiltonians for Accelerated Electronic Structure Calculations of Atoms and Molecules. J. Phys. Chem. A 2014, 118, 495. <https://doi.org/10.1021/jp410191y>
  • Byrd Jason N., Bartlett Rodney J., Montgomery John A.: At What Chain Length Do Unbranched Alkanes Prefer Folded Conformations?. J. Phys. Chem. A 2014, 118, 1706. <https://doi.org/10.1021/jp4121854>
  • Kennedy Matthew R., McDonald Ashley Ringer, DePrince A. Eugene, Marshall Michael S., Podeszwa Rafal, Sherrill C. David: Communication: Resolving the three-body contribution to the lattice energy of crystalline benzene: Benchmark results from coupled-cluster theory. The Journal of Chemical Physics 2014, 140. <https://doi.org/10.1063/1.4869686>
  • DePrince, A. Eugene, Kennedy Matthew R., Sumpter Bobby G., Sherrill C. David: Density-fitted singles and doubles coupled cluster on graphics processing units. Molecular Physics 2014, 112, 844. <https://doi.org/10.1080/00268976.2013.874599>
  • Sedlak Robert, Riley Kevin E., Řezáč Jan, Pitoňák Michal, Hobza Pavel: MP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration. ChemPhysChem 2013, 14, 698. <https://doi.org/10.1002/cphc.201200850>
  • Valiev Rashid R., Ermolina Elena G., Kuznetsova Rimma T., Cherepanov Victor N., Sundholm Dage: Computational and experimental studies of the electronic excitation spectra of EDTA and DTPA substituted tetraphenylporphyrins and their Lu complexes. J Mol Model 2013, 19, 4631. <https://doi.org/10.1007/s00894-012-1400-9>
  • DePrince A. Eugene, Sherrill C. David: Accurate Noncovalent Interaction Energies Using Truncated Basis Sets Based on Frozen Natural Orbitals. J. Chem. Theory Comput. 2013, 9, 293. <https://doi.org/10.1021/ct300780u>
  • DePrince A. Eugene, Sherrill C. David: Accuracy and Efficiency of Coupled-Cluster Theory Using Density Fitting/Cholesky Decomposition, Frozen Natural Orbitals, and a t1-Transformed Hamiltonian. J. Chem. Theory Comput. 2013, 9, 2687. <https://doi.org/10.1021/ct400250u>
  • Kou Zhuangfei, Shen Jun, Xu Enhua, Li Shuhua: Hybrid Coupled Cluster Methods Based on the Split Virtual Orbitals: Barrier Heights of Reactions and Spectroscopic Constants of Open-Shell Diatomic Molecules. J. Phys. Chem. A 2013, 117, 626. <https://doi.org/10.1021/jp309218q>
  • Chwee T. S., Lim G. S., Fan W. Y., Sullivan M. B.: Computational study of molecular properties with dual basis sets. Phys. Chem. Chem. Phys. 2013, 15, 16566. <https://doi.org/10.1039/c3cp51055g>
  • Lehtola Susi, Manninen Pekka, Hakala Mikko, Hämäläinen Keijo: Contraction of completeness-optimized basis sets: Application to ground-state electron momentum densities. The Journal of Chemical Physics 2013, 138. <https://doi.org/10.1063/1.4788635>
  • Landau Arie: Similarity transformed coupled cluster response (ST-CCR) theory - A time-dependent similarity transformed equation-of-motion coupled cluster (STEOM-CC) approach. The Journal of Chemical Physics 2013, 139. <https://doi.org/10.1063/1.4811799>
  • Parrish Robert M., Hohenstein Edward G., Sherrill C. David: Tractability gains in symmetry-adapted perturbation theory including coupled double excitations: CCD+ST(CCD) dispersion with natural orbital truncations. The Journal of Chemical Physics 2013, 139. <https://doi.org/10.1063/1.4826520>
  • Kraus Michal, Pitoňák Michal, Hobza Pavel, Urban Miroslav, Neogrády Pavel: Highly correlated calculations using optimized virtual orbital space with controlled accuracy. Application to counterpoise corrected interaction energy calculations. Int J of Quantum Chemistry 2012, 112, 948. <https://doi.org/10.1002/qua.23014>
  • Hohenstein Edward G., Sherrill C. David: Wavefunction methods for noncovalent interactions. WIREs Comput Mol Sci 2012, 2, 304. <https://doi.org/10.1002/wcms.84>
  • Helgaker Trygve, Coriani Sonia, Jørgensen Poul, Kristensen Kasper, Olsen Jeppe, Ruud Kenneth: Recent Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem. Rev. 2012, 112, 543. <https://doi.org/10.1021/cr2002239>
  • Lu Zhen, Matsika Spiridoula: High-Multiplicity Natural Orbitals in Multireference Configuration Interaction for Excited States. J. Chem. Theory Comput. 2012, 8, 509. <https://doi.org/10.1021/ct200832u>
  • Krause Christine, Werner Hans-Joachim: Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. PCCP 2012, 14, 7591. <https://doi.org/10.1039/c2cp40231a>
  • Shen Jun, Kou Zhuangfei, Xu Enhua, Li Shuhua: The coupled cluster singles, doubles, and a hybrid treatment of connected triples based on the split virtual orbitals. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.3678008>
  • Yang Jun, Chan Garnet Kin-Lic, Manby Frederick R., Schütz Martin, Werner Hans-Joachim: The orbital-specific-virtual local coupled cluster singles and doubles method. The Journal of Chemical Physics 2012, 136. <https://doi.org/10.1063/1.3696963>
  • Hirata So, Keçeli Murat, Ohnishi Yu-ya, Sode Olaseni, Yagi Kiyoshi: Extensivity of Energy and Electronic and Vibrational Structure Methods for Crystals. Annu. Rev. Phys. Chem. 2012, 63, 131. <https://doi.org/10.1146/annurev-physchem-032511-143718>
  • Cacheiro Javier López, Pedersen Thomas Bondo, Fernández Berta, De Merás Alfredo Sánchez, Koch Henrik: The CCSD(T) model with Cholesky decomposition of orbital energy denominators. Int J of Quantum Chemistry 2011, 111, 349. <https://doi.org/10.1002/qua.22582>
  • Grüneis Andreas, Booth George H., Marsman Martijn, Spencer James, Alavi Ali, Kresse Georg: Natural Orbitals for Wave Function Based Correlated Calculations Using a Plane Wave Basis Set. J. Chem. Theory Comput. 2011, 7, 2780. <https://doi.org/10.1021/ct200263g>
  • Dedíková Pavlína, Neogrády Pavel, Urban Miroslav: Electron Affinities of Small Uracil−Water Complexes: A Comparison of Benchmark CCSD(T) Calculations with DFT. J. Phys. Chem. A 2011, 115, 2350. <https://doi.org/10.1021/jp111104j>
  • Yang Jun, Kurashige Yuki, Manby Frederick R., Chan Garnet K. L.: Tensor factorizations of local second-order Møller–Plesset theory. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3528935>
  • Rolik Zoltán, Kállay Mihály: Cost reduction of high-order coupled-cluster methods via active-space and orbital transformation techniques. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3569829>
  • Send Robert, Kaila Ville R. I., Sundholm Dage: Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3596729>
  • Pitoňák Michal, Aquilante Francesco, Hobza Pavel, Neogrády Pavel, Noga Jozef, Urban Miroslav: Parallelized implementation of the CCSD(T) method in MOLCAS using optimized virtual orbitals space and Cholesky decomposed two-electron integrals. Collect. Czech. Chem. Commun. 2011, 76, 713. <https://doi.org/10.1135/cccc2011048>
  • Aquilante Francesco, De Vico Luca, Ferré Nicolas, Ghigo Giovanni, Malmqvist Per‐åke, Neogrády Pavel, Pedersen Thomas Bondo, Pitoňák Michal, Reiher Markus, Roos Björn O., Serrano‐Andrés Luis, Urban Miroslav, Veryazov Valera, Lindh Roland: MOLCAS 7: The Next Generation. J Comput Chem 2010, 31, 224. <https://doi.org/10.1002/jcc.21318>
  • Riley Kevin E., Pitoňák Michal, Jurečka Petr, Hobza Pavel: Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories. Chem. Rev. 2010, 110, 5023. <https://doi.org/10.1021/cr1000173>
  • Landau Arie, Khistyaev Kirill, Dolgikh Stanislav, Krylov Anna I.: Frozen natural orbitals for ionized states within equation-of-motion coupled-cluster formalism. The Journal of Chemical Physics 2010, 132. <https://doi.org/10.1063/1.3276630>
  • Ohnishi Yu-ya, Hirata So: Logarithm second-order many-body perturbation method for extended systems. The Journal of Chemical Physics 2010, 133. <https://doi.org/10.1063/1.3455717>
  • Hohenstein Edward G., Sherrill C. David: Efficient evaluation of triple excitations in symmetry-adapted perturbation theory via second-order Møller–Plesset perturbation theory natural orbitals. The Journal of Chemical Physics 2010, 133. <https://doi.org/10.1063/1.3479400>
  • Adamowicz† Ludwik: Optimized virtual orbital space (OVOS) in coupled-cluster calculations. Molec Phys 2010, 108, 3105. <https://doi.org/10.1080/00268976.2010.520752>
  • Keçeli Murat, Hirata So: Fast coupled-cluster singles and doubles for extended systems: Application to the anharmonic vibrational frequencies of polyethylene in the Γ approximation. Phys Rev B 2010, 82, 115107. <https://doi.org/10.1103/PhysRevB.82.115107>
  • Boman Linus, Koch Henrik: Coupled cluster response theory in parameter subspaces. Int J of Quantum Chemistry 2009, 109, 708. <https://doi.org/10.1002/qua.21898>
  • Taube Andrew G., Bartlett Rodney J.: Rethinking linearized coupled-cluster theory. The Journal of Chemical Physics 2009, 130. <https://doi.org/10.1063/1.3115467>
  • Aquilante Francesco, Todorova Tanya Kumanova, Gagliardi Laura, Pedersen Thomas Bondo, Roos Björn Olof: Systematic truncation of the virtual space in multiconfigurational perturbation theory. The Journal of Chemical Physics 2009, 131. <https://doi.org/10.1063/1.3157463>
  • Šulka Martin, Pitoňák Michal, Neogrády Pavel, Urban Miroslav: Electron affinity of the O2 molecule: CCSD(T) calculations using the optimized virtual orbitals space approach. Int J of Quantum Chemistry 2008, 108, 2159. <https://doi.org/10.1002/qua.21743>
  • Hughes Thomas F., Flocke Norbert, Bartlett Rodney J.: Natural Linear-Scaled Coupled-Cluster Theory with Local Transferable Triple Excitations: Applications to Peptides. J. Phys. Chem. A 2008, 112, 5994. <https://doi.org/10.1021/jp800516q>
  • Dedíková Pavlína, Pitoňák Michal, Neogrády Pavel, Černušák Ivan, Urban Miroslav: Toward More Efficient CCSD(T) Calculations of Intermolecular Interactions in Model Hydrogen-Bonded and Stacked Dimers. J. Phys. Chem. A 2008, 112, 7115. <https://doi.org/10.1021/jp8033903>
  • Taube Andrew G., Bartlett Rodney J.: Improving upon CCSD(T): ΛCCSD(T). I. Potential energy surfaces. The Journal of Chemical Physics 2008, 128. <https://doi.org/10.1063/1.2830236>
  • Taube Andrew G., Bartlett Rodney J.: Frozen natural orbital coupled-cluster theory: Forces and application to decomposition of nitroethane. The Journal of Chemical Physics 2008, 128. <https://doi.org/10.1063/1.2902285>
  • Boman Linus, Koch Henrik, Sánchez de Merás Alfredo: Method specific Cholesky decomposition: Coulomb and exchange energies. The Journal of Chemical Physics 2008, 129. <https://doi.org/10.1063/1.2988315>
  • Meissner Leszek, K��llay Mih��ly, Gauss J��rgen, Pito����k Michal, Holka Filip, Neogr��dy Pavel, Urban Miroslav: A matrix coupled-cluster correction to the multi-reference configuration interaction method. Journal of Molecular Structure: THEOCHEM 2006, 768, 63. <https://doi.org/10.1016/j.theochem.2006.05.018>
  • Köhn Andreas, Olsen Jeppe: Coupled-cluster with active space selected higher amplitudes: Performance of seminatural orbitals for ground and excited state calculations. The Journal of Chemical Physics 2006, 125. <https://doi.org/10.1063/1.2364491>
  • Pito[nbreve]ák Michal, Neogrády Pavel, Kellö VladimÍr, Urban Miroslav: Optimized virtual orbitals for relativistic calculations: an alternative approach to the basis set construction for correlation calculations. Mole Phys 2006, 104, 2277. <https://doi.org/10.1080/00268970600662390>