Collect. Czech. Chem. Commun. 2003, 68, 2105-2119
https://doi.org/10.1135/cccc20032105

Octadecylrhodamine B as a Specific Micelle-Binding Fluorescent Tag for Fluorescence Correlation Spectroscopy Studies of Amphiphilic Water-Soluble Block Copolymer Micelles. Spectroscopic Behavior in Aqueous Media

Jana Humpolíčkováa, Karel Procházkaa,* and Martin Hofb

a Department of Physical and Macromolecular Chemistry and Laboratory of Specialty Polymers, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic
b J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic and Center for Complex Molecular Systems and Biomacromolecules, Dolejškova 3, 182 23 Prague 8, Czech Republic

References

1. Iyi N., Sasai R., Fujita T., Deguchi T., Sota T., Arbeola F. L., Kitamura K.: Appl. Clay Sci. 2002, 22, 125. <https://doi.org/10.1016/S0169-1317(02)00144-8>
2. Nagao T., Kubo T., Fujimoto R.: Biochem. J. 1995, 307, 563. <https://doi.org/10.1042/bj3070563>
3. Nakashima K., Anzai T., Fujimoto Y.: Langmuir 1994, 10, 658. <https://doi.org/10.1021/la00015a012>
4. Ediger M. D., Dominigue R. P., Fayer M. D.: J. Chem. Phys. 1984, 80, 1246. <https://doi.org/10.1063/1.446802>
5. Štěpánek M., Humpolíčková J., Procházka K., Hof M., Tuzar Z., Špírková M.: Collect. Czech. Chem. Commun. 2003, 68, 2120. <https://doi.org/10.1135/cccc20032120>
6. Magde D., Elson E. L., Webb W. W.: Phys. Rev. Lett. 1972, 29, 705. <https://doi.org/10.1103/PhysRevLett.29.705>
7. Webb W. W. in: Fluorescence Correlation Spectroscopy. Theory and Applications (R. Riedler and E. S. Elson, Eds). Springer Verlag, Berlin 2001.
8. Hink M. A., van Hoek A., Visser A. J. W. G.: Langmuir 1999, 15, 992. <https://doi.org/10.1021/la980949n>
9. Koppel D. E.: Phys. Rev. 1974, 10, 1938. <https://doi.org/10.1103/PhysRevA.10.1938>
10. Kask P., Günter R., Axhausen P.: Eur. Biophys. J. 1997, 25, 163. <https://doi.org/10.1007/s002490050028>
11. Meseth U., Wohland T., Rigler R., Vogel H.: Biophys. J. 1999, 80, 2987.
12. Edman L.: J. Phys. Chem. A 2000, 104, 6165. <https://doi.org/10.1021/jp000100r>
13. Wohland T., Rigler R., Vogel H.: Biophys. J. 2000, 80, 2987. <https://doi.org/10.1016/S0006-3495(01)76264-9>
14. Magde D., Elson E. L., Webb W. W.: Biopolymers 1974, 13, 29. <https://doi.org/10.1002/bip.1974.360130103>
15. Elson E. L., Magde D.: Biopolymers 1974, 13, 1. <https://doi.org/10.1002/bip.1974.360130102>
16. Magde D., Webb W. W., Elson E. L.: Biopolymers 1978, 17, 361. <https://doi.org/10.1002/bip.1978.360170208>
17. Aragón S. R., Pecora R.: Biopolymers 1975, 14, 119. <https://doi.org/10.1002/bip.1975.360140110>
18. Aragón S. R., Pecora R.: J. Chem. Phys. 1976, 64, 1791. <https://doi.org/10.1063/1.432357>
19. Hess S. T., Huang S., Heikal A. A., Webb W. W.: Biochemistry 2002, 41, 697. <https://doi.org/10.1021/bi0118512>
20. Thompson N. L. in: Topics in Fluorescence Spectroscopy (J. R. Lakowicz, Ed.), Vol. 1, Chap. 6. Plenum Press, New York 1991.
21. Del Monte F., Levy D.: J. Phys. Chem. B 1998, 102, 8036. <https://doi.org/10.1021/jp982396v>
22. Burghardt T. P., Lyke J. E., Ajtai K.: Biophys. Chem. 1996, 59, 119. <https://doi.org/10.1016/0301-4622(95)00118-2>
23. Vogel R., Harvey M., Edwards G., Meredith P., Heckenberg N., Trau M., Rubinstein- Dunlop H.: Macromolecules 2002, 35, 2063. <https://doi.org/10.1021/ma010995l>
24. Ray K., Nakahara H.: J. Phys. Chem. B 2002, 106, 92. <https://doi.org/10.1021/jp011946d>
25. Del Monte F., Mackenzie J. D., Levy D.: Langmuir 2000, 16, 7377. <https://doi.org/10.1021/la000540+>
26. Aguirresacona I. U., Arbeola F. L., Arbeola I. L.: J. Chem. Educ. 1989, 66, 866. <https://doi.org/10.1021/ed066p866>
27. Chaudhuri R., Arbeola F. L., Arbeola I. L.: Langmuir 2000, 16, 1285. <https://doi.org/10.1021/la990772c>
28. Kemnitz K., Yoshihara K.: J. Phys. Chem. 1991, 95, 6095. <https://doi.org/10.1021/j100169a012>
29. Nakashima K., Fujimoto Y.: Photochem. Photobiol. 1994, 60, 565. <https://doi.org/10.1111/j.1751-1097.1994.tb05148.x>
30. McRae E. G., Kasha M.: Physical Processes in Radiation Biology. Academic Press, New York 1964.
31. Kasha M., Rawls H. R., El-Bayoumi A.: Pure Appl. Chem. 1965, 11, 38. <https://doi.org/10.1351/pac196511030371>
32. McRae E. G., Kasha M.: J. Chem. Phys. 1961, 11, 38.
33. Chambers R. W., Kajiwara T., Kearns D. R.: J. Phys. Chem. 1974, 78, 380. <https://doi.org/10.1021/j100597a012>
34. Dunsbach R., Schmidt R.: J. Photochem. Photobiol., A: Chemistry 1995, 85, 275. <https://doi.org/10.1016/1010-6030(94)03911-D>
35. Fujii T., Nishikiori H., Tamura T.: Chem. Phys. Lett. 1995, 233, 424. <https://doi.org/10.1016/0009-2614(94)01477-D>
36. Mukerjee P.: J. Phys. Chem. 1965, 69, 2821. <https://doi.org/10.1021/j100893a003>
37. MacDonald R. I.: J. Biol. Chem. 1990, 265, 13533.
38. Štěpánek M., Podhájecká K., Procházka K., Teng Y., Webber S. E.: Langmuir 1999, 15, 4185. <https://doi.org/10.1021/la981129d>