Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1994, 59, 461-466
https://doi.org/10.1135/cccc19940461

The Gas-Solid-Phase 2,5-Dioxopiperazine Synthesis. Cyclization of Vaporous Dipeptides on Silica Surface

Vladimir A. Basiuk and Taras Yu. Gromovoy

Institute of Surface Chemistry, Academy of Sciences of the Ukraine, Prospekt Nauki 31, Kiev 252650, Ukraine

Crossref Cited-by Linking

  • Hattori Tomohiro, Yamamoto Hisashi: Synthesis of Silacyclic Dipeptides: Peptide Elongation at Both N- and C-Termini of Dipeptide. J. Am. Chem. Soc. 2022, 144, 1758. <https://doi.org/10.1021/jacs.1c11260>
  • Pérez‐Mellor Ariel, Le Barbu‐Debus Katia, Zehnacker Anne: Solid‐state synthesis of cyclo LD‐diphenylalanine: A chiral phase built from achiral subunits. Chirality 2020, 32, 693. <https://doi.org/10.1002/chir.23195>
  • Pérez-Mellor Ariel, Alata Ivan, Lepere Valeria, Zehnacker Anne: Chirality effects in the structures of jet-cooled bichromophoric dipeptides. Journal of Molecular Spectroscopy 2018, 349, 71. <https://doi.org/10.1016/j.jms.2018.02.005>
  • Pérez‐Mellor Ariel, Zehnacker Anne: Vibrational circular dichroism of a 2,5‐diketopiperazine (DKP) peptide: Evidence for dimer formation in cyclo LL or LD diphenylalanine in the solid state. Chirality 2017, 29, 89. <https://doi.org/10.1002/chir.22674>
  • Alata Ivan, Pérez-Mellor Ariel, Ben Nasr Feriel, Scuderi Debora, Steinmetz Vincent, Gobert Fabrice, Jaïdane Nejm-Eddine, Zehnacker-Rentien Anne: Does the Residues Chirality Modify the Conformation of a Cyclo-Dipeptide? Vibrational Spectroscopy of Protonated Cyclo-diphenylalanine in the Gas Phase. J. Phys. Chem. A 2017, 121, 7130. <https://doi.org/10.1021/acs.jpca.7b06159>
  • Smith Aaron J., Ali Farukh I., Soldatov Dmitriy V.: Glycine homopeptides: the effect of the chain length on the crystal structure and solid state reactivity. CrystEngComm 2014, 16, 7196. <https://doi.org/10.1039/C4CE00630E>
  • Georgelin Thomas, Jaber Maguy, Bazzi Houssein, Lambert Jean-François: Formation of Activated Biomolecules by Condensation on Mineral Surfaces – A Comparison of Peptide Bond Formation and Phosphate Condensation. Orig Life Evol Biosph 2013, 43, 429. <https://doi.org/10.1007/s11084-013-9345-2>
  • Rimola Albert, Costa Dominique, Sodupe Mariona, Lambert Jean-François, Ugliengo Piero: Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. Chem. Rev. 2013, 113, 4216. <https://doi.org/10.1021/cr3003054>
  • Lambert Jean-François, Jaber Maguy, Georgelin Thomas, Stievano Lorenzo: A comparative study of the catalysis of peptide bond formation by oxide surfaces. Phys. Chem. Chem. Phys. 2013, 15, 13371. <https://doi.org/10.1039/c3cp51282g>
  • Lambert Jean-François: Adsorption and Polymerization of Amino Acids on Mineral Surfaces: A Review. Orig Life Evol Biosph 2008, 38, 211. <https://doi.org/10.1007/s11084-008-9128-3>
  • Bujdák Juraj, Rode Bernd Michael: On the mechanisms of oligopeptide reactions in solution and clay dispersion. Journal of Peptide Science 2004, 10, 731. <https://doi.org/10.1002/psc.580>
  • Basiuk Vladimir A., Gromovoy Taras Yu.: Free energies of adsorption of amino acids, short linear peptides and 2,5-piperazinediones on silica from water as estimated from high-performance liquid-chromatographic retention data. Adsorption 1996, 2, 145. <https://doi.org/10.1007/BF00127044>