Collect. Czech. Chem. Commun. 1986, 51, 375-390
https://doi.org/10.1135/cccc19860375

Base catalyzed cyclization of substituted esters of hydantoic and thiohydantoic acids

Jaromír Kaválek, Vladimír Macháček, Gabriela Svobodová and Vojeslav Štěrba

Department of Organic Chemistry, Institute of Chemical Technology, 532 10 Pardubice

Abstract

Base catalyzed cyclization rates have been measured of 22 derivatives of hydantoic and thiohydantoic acid esters in water and methanol. The cyclization of methyl and ethyl esters of hydantoic and 5-methylhydantoic acids is accompanied by hydrolysis of the ester group, whereas with the other derivatives the hydrolysis does not take place. Hydrolysis of the cyclization products (hydantoin and thiohydantoin derivatives) is not significant under the kinetic conditions. The cyclization of methyl ester of 5-phenylhydantoic acid in methanol is reversible; the equilibrium mixture contains 30% of the starting ester. In all the cases the cyclization is subject to specific base catalysis; exceptions are esters of 5-phenylthiohydantoic and 5-phenyl-2-methylthiohydantoic acids whose cyclizations are subject to general base catalysis. Substituents always accelerate the cyclization. The 3-substituents have the greatest effects, the cyclization rate being considerably increased with bulk of the substituents; similarly large effect of 5-phenyl group consists mainly in its polar effects on the pre-equilibrium. The cyclization are slower in methanol at the same concentration of the lyate ion: the greatest difference (up to 3 orders of magnitude) is observed with the 5-phenyl derivatives.