Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 1947, 12, 39-63
https://doi.org/10.1135/cccc19470039

Polarographic determination of the rate of the reaction between ferrohem and hydrogen peroxide

R. Brdička and K. Wiesner

Crossref Cited-by Linking

  • Laborda E., González J., Molina A.: A reasoned general explanation about the concepts of diffusion and reaction layers. J Solid State Electrochem 2024, 28, 1259. <https://doi.org/10.1007/s10008-023-05688-3>
  • Duval Jérôme F.L., van Leeuwen Herman P., Town Raewyn M.: Electrostatic effects on ligand-assisted transfer of metals to (bio)accumulating interfaces and metal complexes (bioavai)lability. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 658, 130679. <https://doi.org/10.1016/j.colsurfa.2022.130679>
  • Town Raewyn M., van Leeuwen Herman P.: Chemodynamic features of nickel(II) and its complexes: Implications for bioavailability in freshwaters. Ecotoxicology and Environmental Safety 2022, 241, 113840. <https://doi.org/10.1016/j.ecoenv.2022.113840>
  • Town Raewyn M., van Leeuwen Herman P.: Stripping chronopotentiometry at scanned deposition potential (SSCP): An effective methodology for dynamic speciation analysis of nanoparticulate metal complexes. Journal of Electroanalytical Chemistry 2019, 853, 113530. <https://doi.org/10.1016/j.jelechem.2019.113530>
  • Molina A., Laborda E.: Detailed theoretical treatment of homogeneous chemical reactions coupled to interfacial charge transfers. Electrochimica Acta 2018, 286, 374. <https://doi.org/10.1016/j.electacta.2018.07.142>
  • Duval Jérôme F. L., Town Raewyn M., van Leeuwen Herman P.: Lability of Nanoparticulate Metal Complexes at a Macroscopic Metal Responsive (Bio)interface: Expression and Asymptotic Scaling Laws. J. Phys. Chem. C 2018, 122, 6052. <https://doi.org/10.1021/acs.jpcc.7b11982>
  • van Leeuwen Herman P., Duval Jérôme F. L., Pinheiro José Paulo, Blust Ronny, Town Raewyn M.: Chemodynamics and bioavailability of metal ion complexes with nanoparticles in aqueous media. Environ. Sci.: Nano 2017, 4, 2108. <https://doi.org/10.1039/C7EN00625J>
  • Town Raewyn M., Buffle Jacques, Duval Jérôme F. L., van Leeuwen Herman P.: Chemodynamics of Soft Charged Nanoparticles in Aquatic Media: Fundamental Concepts. J. Phys. Chem. A 2013, 117, 7643. <https://doi.org/10.1021/jp4044368>
  • Heyrovský Michael: Ninety Years of Polarography. The Chemical Record 2012, 12, 14. <https://doi.org/10.1002/tcr.201200001>
  • Raymond Peter A., Zappa Christopher J., Butman David, Bott Thomas L., Potter Jody, Mulholland Patrick, Laursen Andrew E., McDowell William H., Newbold Denis: Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limn Fluids and Environments 2012, 2, 41. <https://doi.org/10.1215/21573689-1597669>
  • Zuman Petr: Past, present, and future of applications of electroanalytical techniques in analytical and physical organic chemistry. J Solid State Electrochem 2011, 15, 1753. <https://doi.org/10.1007/s10008-011-1370-3>
  • Jha Shailendra K., Kant Rama: Theory of potentiostatic current transients for coupled catalytic reaction at random corrugated fractal electrode. Electrochimica Acta 2010, 55, 7266. <https://doi.org/10.1016/j.electacta.2010.07.010>
  • Feldberg Stephen W., Campbell Jennifer F.: The Quasicatalytic Mechanism: A Variation of the Catalytic (EC′) Mechanism. Anal. Chem. 2009, 81, 8797. <https://doi.org/10.1021/ac901309v>
  • Zhang Zeshi, Buffle Jacques: Interfacial Metal Flux in Ligand Mixtures. 3. Unexpected Flux Enhancement Due to Kinetic Interplay at the Consuming Surface, Computed for Aquatic Systems. Environ. Sci. Technol. 2009, 43, 5762. <https://doi.org/10.1021/es9003526>
  • Zhang Zeshi, Buffle Jacques: Interfacial Metal Flux in Ligand Mixtures. 1. The Revisited Reaction Layer Approximation: Theory and Examples of Applications. J. Phys. Chem. A 2009, 113, 6562. <https://doi.org/10.1021/jp811429e>
  • Zhang Zeshi, Buffle Jacques, Town Raewyn M., Puy Jaume, van Leeuwen Herman P.: Metal Flux in Ligand Mixtures. 2. Flux Enhancement Due to Kinetic Interplay: Comparison of the Reaction Layer Approximation with a Rigorous Approach. J. Phys. Chem. A 2009, 113, 6572. <https://doi.org/10.1021/jp8114308>
  • Doménech Antonio, García Hermenegildo, Marquet Jordi, Bourdelande José Luis, Herance José Raul: Modelling electrocatalysis of hydroquinone oxidation by nicotinamide adenine dinucleaotide coenzyme encapsulated within SBA-15 and MCM-41 mesoporous aluminosilicates. Electrochimica Acta 2006, 51, 4897. <https://doi.org/10.1016/j.electacta.2006.01.029>
  • Salvador José, Puy Jaume, Cecília Joan, Galceran Josep: Lability of complexes in steady-state finite planar diffusion. Journal of Electroanalytical Chemistry 2006, 588, 303. <https://doi.org/10.1016/j.jelechem.2006.01.005>
  • Salvador José, Garcés José Luis, Galceran Josep, Puy Jaume: Lability of a Mixture of Metal Complexes under Steady-State Planar Diffusion in a Finite Domain. J. Phys. Chem. B 2006, 110, 13661. <https://doi.org/10.1021/jp061748s>
  • Mirčeski Valentin, Skrzypek Sławomira, Ciesielski Witold, Sokołowski Adam: Theoretical and experimental study of the catalytic hydrogen evolution reaction in the presence of an adsorbed catalyst by means of square-wave voltammetry. Journal of Electroanalytical Chemistry 2005, 585, 97. <https://doi.org/10.1016/j.jelechem.2005.07.017>
  • Roznyatovskaya Nataliya V., Tsirlina Galina A., Roznyatovskii Vladimir V., Mitiaev Alexander S., Smurnyy Yegor D.: Macrocyclic binuclear copper(II) and nickel(II) complexes: the key role of central ions in hydrogen peroxide electrocatalysis. Mendeleev Communications 2005, 15, 93. <https://doi.org/10.1070/MC2005v015n03ABEH002100>
  • van Leeuwen Herman P., Puy Jaume, Galceran Josep, Cecı́lia Joan: Evaluation of the Koutecký–Koryta approximation for voltammetric currents generated by metal complex systems with various labilities. Journal of Electroanalytical Chemistry 2002, 526, 10. <https://doi.org/10.1016/S0022-0728(02)00745-3>
  • Jansen Stefan, Blust Ronny, Van Leeuwen Herman P.: Metal Speciation Dynamics and Bioavailability:  Zn(II) and Cd(II) Uptake by Mussel (Mytilus edulis) and Carp (Cyprinus carpio). Environ. Sci. Technol. 2002, 36, 2164. <https://doi.org/10.1021/es010219t>
  • van Leeuwen Herman P.: Revisited: The Conception of Lability of Metal Complexes. Electroanalysis 2001, 13, 826. <https://doi.org/10.1002/1521-4109(200106)13:10<826::AID-ELAN826>3.0.CO;2-J>
  • Mirčeski Valentin, Gulaboski Rubin: Surface Catalytic Mechanism in Square-Wave Voltammetry. Electroanalysis 2001, 13, 1326. <https://doi.org/10.1002/1521-4109(200111)13:16<1326::AID-ELAN1326>3.0.CO;2-S>
  • Hong-Bin He, Kok-Siong Siow, Hua Chi, Zhi-Qiang Gao, An-Kong Hsieh: Determination of molybdenum using polarographic catalytic current. Analytica Chimica Acta 1995, 309, 73. <https://doi.org/10.1016/0003-2670(95)00016-S>
  • Heyrovský Michael, Vavrˇic˘ka Stanislav: Electroreduction of molecular oxygen in one 4-electron step on mercury. Journal of Electroanalytical Chemistry 1993, 353, 335. <https://doi.org/10.1016/0022-0728(93)80311-5>
  • Hsieh An-Kong, Ong Toon-Hui: Trace determination of molybdenum using a catalytic current in differential-pulse polarography. Analytica Chimica Acta 1992, 256, 237. <https://doi.org/10.1016/0003-2670(92)85349-B>
  • Galicia Laura, Gonźalez Ignacio, Meas Yunny: Electrocatalytic effect of phenanthroline iron complexes on oxygen reduction in sulfuric acid media. React Kinet Catal Lett 1991, 44, 109. <https://doi.org/10.1007/BF02068392>
  • Hasebe Kiyoshi, Hikima Satoshi, Kakizaki Teiji, Yoshida Hitoshi: Differential pulse polarographic determination of citric acid with a soluble enzyme preparation. Z. Anal. Chem. 1989, 333, 19. <https://doi.org/10.1007/BF00572610>
  • Sugiyama Kazuto, Aoki Koichi: Catalytic reactions of bis(1,10-phenanthroline) cuprous complex with hydrogen peroxide at glassy carbon and pyrolytic graphite electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 262, 211. <https://doi.org/10.1016/0022-0728(89)80023-3>
  • Zhao Jingzhong, Jin Wenrui: A study on the adsorption voltammetry of the iron(III)-2-(5'-bromo-2'-pyridylazo)-5-diethylaminophenol system. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 267, 271. <https://doi.org/10.1016/0022-0728(89)80254-2>
  • Vlček A. A.: Electrocatalysis. React Kinet Catal Lett 1987, 35, 449. <https://doi.org/10.1007/BF02062179>
  • DÍAZ MARIO, VEGA AURELIO, COCA JOSÉ: CORRELATION FOR THE ESTIMATION OF GAS-LIQUID DIFFUSIVITY. Chemical Engineering Communications 1987, 52, 271. <https://doi.org/10.1080/00986448708911872>
  • Kikuchi Kenji: A Method of Calculation for d.c. Polarographic Catalytic Wave. Bulletin of the Chemical Society of Japan 1987, 60, 903. <https://doi.org/10.1246/bcsj.60.903>
  • Zeng Jilin., Osteryoung Robert A.: Square wave voltammetry for a pseudo-first-order catalytic process. Anal. Chem. 1986, 58, 2766. <https://doi.org/10.1021/ac00126a040>
  • Jan Chwu Ching., McCreery Richard L.: High-resolution spatially resolved visible absorption spectrometry of the electrochemical diffusion layer. Anal. Chem. 1986, 58, 2771. <https://doi.org/10.1021/ac00126a041>
  • Galvez J., Serna C., Molina A., Van Leeuwen H.P.: Influence of a preceding chemical reaction on limiting currents in normal pulse polarography and in dc polarography. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 167, 15. <https://doi.org/10.1016/0368-1874(84)87055-0>
  • Rusling James F., Brooks Margaret Y.: Adsorption and coupled chemical reactions in the electroreduction of ferriheme in alkaline solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 163, 277. <https://doi.org/10.1016/S0022-0728(84)80057-1>
  • Kim Myung Hoon., Birke Ronald L.: Differential pulse polarography for a first-order catalytic process. Anal. Chem. 1983, 55, 522. <https://doi.org/10.1021/ac00254a024>
  • Vanderborgh Nicholas E., Jones C. E. Roland.: Laser microprobe mass analysis studies on coal and shale samples. Anal. Chem. 1983, 55, 527. <https://doi.org/10.1021/ac00254a025>
  • Sobkowiak A., Fleszar B.: The equation of catalytic current of the Fe+3H2O2 system with regard to hydroxylation. Electrochimica Acta 1981, 26, 847. <https://doi.org/10.1016/0013-4686(81)85044-X>
  • Nomura Tsuyoshi: Indirect polarographic determination of microgram amounts of iron by means of the catalytic oxidation of 5-aminosalicylic acid. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1981, 124, 213. <https://doi.org/10.1016/S0022-0728(81)80298-7>
  • Mairanovskii S.G., Gultyai V.P.: The effect of zinc ions on electroreduction processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1980, 115, 123. <https://doi.org/10.1016/S0022-0728(80)80500-6>
  • Steeman E., Temmerman E., Verbeek F.: Electrochemical reduction of the lanthanide ions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1978, 89, 97. <https://doi.org/10.1016/S0022-0728(78)80035-7>
  • Kolpin C. F., Swofford H. S.: Heme catalyzed reduction of oxygen and hydrogen peroxide at a mercury electrode surface. Anal. Chem. 1978, 50, 920. <https://doi.org/10.1021/ac50029a025>
  • Rigo Adelio, Rotilio Giuseppe: Simultaneous determination of superoxide dismutase and catalase in biological materials by polarography. Analytical Biochemistry 1977, 81, 157. <https://doi.org/10.1016/0003-2697(77)90609-1>
  • Březina M., Khalil W., Koryta J, Musilová M.: Electroreduction of oxygen and hydrogen peroxide catalyzed by hemine and phthalocyanines. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 77, 237. <https://doi.org/10.1016/S0022-0728(77)80475-0>
  • Ohmori Mitsuaki, Takagi Masanosuke: Polarography of α-Keto Acids in Aqueous and Nonaqueous Solutions. Bulletin of the Chemical Society of Japan 1977, 50, 773. <https://doi.org/10.1246/bcsj.50.773>
  • Opekar František, Beran Přemysl: Rotating disk electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1976, 69, 1. <https://doi.org/10.1016/S0022-0728(76)80129-5>
  • Tomat Renato, Rigo Adelio: Reactivities of aromatic compounds towards the amino radical. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1975, 63, 329. <https://doi.org/10.1016/S0022-0728(75)80304-4>
  • Clauss H.: Pulse Polarographic Measurements of the Oxidation of Ti(III) by NH3OH+ in Oxalic Acid. Ber Bunsenges Phys Chem 1974, 78, 702. <https://doi.org/10.1002/bbpc.19740780716>
  • Möller D., Heckner K.-H.: Zur Elektrodenkinetik Irreversibler Reaktionen an Festelektroden. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1972, 38, 337. <https://doi.org/10.1016/S0022-0728(72)80344-9>
  • St‐Denis C. E., Fell C. J. D.: Diffusivity of oxygen in water. Can J Chem Eng 1971, 49, 885. <https://doi.org/10.1002/cjce.5450490632>
  • Pulidori F., Borghesani G., Bighi C., Pedriali R.: Reduction mechanism of nitrogen compounds at the DME. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1970, 27, 385. <https://doi.org/10.1016/S0022-0728(70)80234-0>
  • De Levie R.: On the electrocemical oscillator. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1970, 25, 257. <https://doi.org/10.1016/S0022-0728(70)80343-6>
  • Valcher S.: An example of a second-order catalytic polarographic wave originating by reaction between two electrode products. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1969, 21, 269. <https://doi.org/10.1016/S0022-0728(69)80095-1>
  • Duda J. L., Vrentas J. S.: Laminar liquid jet diffusion studies. AIChE Journal 1968, 14, 286. <https://doi.org/10.1002/aic.690140215>
  • Milyavskii Yu. S., Sinyakova S. I.: Catalytic waves of hydrogen peroxide in the presence of complexes of trivalent iron. Russ Chem Bull 1968, 17, 945. <https://doi.org/10.1007/BF00910822>
  • Wise D.L., Houghton G.: The diffusion coefficients of ten slightly soluble gases in water at 10–60°C. Chemical Engineering Science 1966, 21, 999. <https://doi.org/10.1016/0009-2509(66)85096-0>
  • Verdier E.T., Baptiste Mlle G.: Etude polarographique du cobalt bivalent en presence d'electrolytes de base non complexants. Journal of Electroanalytical Chemistry (1959) 1965, 10, 42. <https://doi.org/10.1016/0022-0728(65)85014-8>
  • Henne Mary T., Collat Justin W.: Polarography of hydrogen peroxide in lanthanum nitrate solutions. Journal of Electroanalytical Chemistry (1959) 1964, 7, 359. <https://doi.org/10.1016/0022-0728(64)80024-3>
  • Kolthoff I.M., Izutsu K.: Exaltation of the first oxygen wave at the dropping mercury electrode. Journal of Electroanalytical Chemistry (1959) 1964, 7, 85. <https://doi.org/10.1016/0022-0728(64)85001-4>
  • Houghton G., Ritchie P.D., Thomson J.A.: The rate of solution of small stationary bubbles and the diffusion coefficients of gases in liquids. Chemical Engineering Science 1962, 17, 221. <https://doi.org/10.1016/0009-2509(62)85001-5>
  • Koutecký J., Koryta J.: The general theory of polarographic kinetic currents. Electrochimica Acta 1961, 3, 318. <https://doi.org/10.1016/0013-4686(61)85008-1>
  • Nürnberg H.W., Von Stackelberg M.: Arbeitsmethoden und anwendungen der gleichspannungspolarographie. Journal of Electroanalytical Chemistry (1959) 1961, 2, 350. <https://doi.org/10.1016/0022-0728(61)85018-3>
  • Takagi Masanosuke: Polarographic and Spectrophotometric Studies on Trimethylpyruvic Acid. Bulletin of the Chemical Society of Japan 1961, 34, 905. <https://doi.org/10.1246/bcsj.34.905>
  • Nürnberg H. W.: Die Anwendung der Polarographie in der organischen Chemie. Angewandte Chemie 1960, 72, 433. <https://doi.org/10.1002/ange.19600721303>
  • Brdička R.: II1. Schnelle Lösungsreaktionen in den polarographischen Depolarisationsvorgängen und ihre Geschwindigkeitsbestimmung. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1960, 64, 16. <https://doi.org/10.1002/bbpc.19600640109>
  • Furlani Claudio, Morpurgo Giorgio: Electrolytic reoxidation after current reversal in chronopotentiometry. Journal of Electroanalytical Chemistry (1959) 1960, 1, 351. <https://doi.org/10.1016/0022-0728(60)85163-7>
  • Henke Karl‐Heinz, Hans Willi: Zur Theorie der polarographischen Kurve VI Reaktionskinetisch bedingte polarographische Stromstärke 3. Mitteilung: Dem Elektrodenprozeß nachgelagerte chemische Reaktionen unter Rückbildung des Depolarisators. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1955, 59, 676. <https://doi.org/10.1002/bbpc.19550590715>
  • Millington R. J.: Diffusion Constant and Diffusion Coefficient. Science 1955, 122, 1090. <https://doi.org/10.1126/science.122.3179.1090>
  • Cruse Kurt, Haul Robert: Polarographische Bestimmung von m‐Dinitrio‐, s‐Trinitrobenzol und Tetranitromethan. Zeitschrift für Elektrochemie und angewandte physikalische Chemie 1949, 53, 115. <https://doi.org/10.1002/bbpc.19490530307>
  • RICHES J. P. R.: AN INTRODUCTION TO POLAROGRAPHIC METHODS AND THEIR APPLICATION TO THE ANALYSIS OF PLANT MATERIAL. New Phytologist 1948, 47, 1. <https://doi.org/10.1111/j.1469-8137.1948.tb05089.x>