Bio- and air-tolerant carbon-carbon bond formations *via* organometallic ruthenium catalysis

Louis Adriaenssens, Lukáš Severa, Jan Vávra, Tereza Šálová, Jakub Hývl, Martina Čížková, Radek Pohl, David Šaman and Filip Teplý*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v. v. i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

Electronic Supplementary Data

Table of Contents

Materials		S2
Analytical data		S2
Scanned NMR spectra		S7
Yield determination in transf	ormation $15 \rightarrow 16$	S15
References		S17

Materials

Catalyst 1, Chloro(1,5-cyclooctadiene)(pentamethylcyclopentadienyl)ruthenium(II) $[(C_{10}H_{15})Ru(C_8H_{12})Cl], [(Cp*Ru(cod)Cl], (Strem, 98\%, CAS 92390-26-6)]$ CDCl₃ (Merck, 99.8%, 102450) D₂O (Aldrich, 99.96%, 7789-20-0) Dimethyl sulfoxide (Aldrich, 99+%(GC), 67-68-5) Dimethyl acetylenedicarboxylate (Dimethyl but-2-ynedioate, Fluka, purum, 96%, 01110) Propargylether (Aldrich, 99%, 416967) Malononitrile (Fluka, 98%, 63390) (Trimethylsilyl)diazomethane solution (2M solution in diethyl ether, Aldrich, 527254) 3-Butyn-1-ol (Aldrich, 97%, 130850) Allylalcohol (Fluka, 98%, 05790) Petrolether, ethyl acetate, diethyl ether, *n*-pentane, hexanes and acetone were purchased from Penta, Czech Republic (www.pentachemicals.eu) Sodium sulphate (anhydrous Penta) Envne 7 was prepared according to the published procedure 1 . Lyophilized bovine serum albumin was obtained from Serva.

Analytical data

NMR spectra were measured on a Bruker Avance 600 (600 MHz for ¹H, 151 MHz for ¹³C), Bruker Avance 500 (500 MHz for ¹H, 125.7 MHz for ¹³C) or Bruker Avance 400 (400 MHz for ¹H, 100.6 MHz for ¹³C) NMR spectrometer. Chemical shifts are given in δ -scale as parts per million (ppm); coupling constants (*J*) are given in Hertz. Where indicated, the signal assignments in the NMR spectra are unambiguous; the numbering scheme is arbitrary and is shown in the inserts. Where assigned, all ¹H and ¹³C resonance assignments are based on analysis of H,H-COSY; H,H-ROESY; H,C-HSQC and H,C-HMBC spectra. IR spectra were recorded on a Bruker EQUINOX55 (IFS55) spectrometer in CHCl₃, or CCl₄ (cuvette width 0.1 mm), or as KBr pellets. Mass spectral data were obtained at the Mass Spectrometry Facility operated by the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic. EI MS spectra were measured at an electron energy of 70 eV; *m/z* values are given along with their relative intensities (%). FAB MS spectra were measured using a thioglycerol-glycerol 3:1 matrix; *m/z* values are given. ESI mass spectra were recorded using a

Thermo Scientific LCQ Fleet mass spectrometer equipped with an electrospray ion source and controlled by Xcalibur software. The mobile phase consisted of methanol/water (9:1), flow rate of 200 μ L/min. The sample was dissolved, diluted with the mobile phase and injected using a 5- μ L loop. Spray voltage, capillary voltage, tube lens voltage and capillary temperature were 5.5 kV, 5 V, 80 V and 275 °C, respectively. HR MS spectra were obtained with the EI or APCI instruments.

Analytical data for hexamethyl benzene-1,2,3,4,5,6-hexacarboxylate (3)³

Analytical data of recovered dimethyl acetylenedicarboxylate (2)

 $\begin{array}{c|c} \mathsf{CO}_2\mathsf{Me} & R_{f} \ [SiO_2, \ hexanes: ethyl \ acetate \ (50:50)]: \ 0.90. \ \delta_H \ (CDCl_3, \ 400 \ \text{MHz}): \ 3.85 \ (s, \ 6H, \\ & \mathsf{CH}_3). \ \delta_C \ (100 \ \text{MHz}, \ CDCl_3): \ 53.4 \ (CH_3), \ 74.6 \ (C), \ 152.2 \ (C). \\ & \mathsf{CO}_2\mathsf{Me} \end{array}$

Analytical data for 2-(1,3-Dihydrofuro[3,4-c]pyridin-6-yl)acetonitrile (6)⁵

⁵ ³ ³ ² ^{Cl}

 R_f [SiO₂, hexanes:ethyl acetate (50:50)]: 0.18. IR (CCl₄): \tilde{v} (cm⁻¹) 3022 (s, =CH), 2258 (w, C≡N), 1614 (s, ring), 1397 (s, ring), 1048 (vs, COC), 901 (s, ring). δ_H (CDCl₃, 400 MHz): 3.98 (s, 2H, CH₂CN); 5.12 (td, 2H,

J = 2.3, 0.8, H-7); 5.16 (m, 2H, H-5); 7.37 (m, 1H, H-3); 8.49 (q, 1H, J = 0.8, H-9). $\delta_{\rm C}$ (100 MHz, CDCl₃): 26.46 (CH₂); 71.45 (CH₂); 72.72 (CH₂); 115.08 (CH); 116.98 (C); 134.93 (C); 142.76 (CH); 149.17 (C); 150.71 (C). HRMS (EI) m/z: [M⁺] (C₉H₈N₂O): calc.: 160.0637, found: 160.0634.

Analytical data for

mixture of 6-hydroxy-4-methylenehexanal (9a) and 5-methyleneoxepan-2-ol (9b)⁶

 R_f [SiO₂, *n*-pentane:diethyl ether (50:50)]: 0.23. IR (CCl₄): \tilde{v} (cm⁻¹) 2947 (s, CH₂), 2932 (s, sh, CH₂), 1731 (vs, C=O), 1645 (m, C=C), 897 (s, =CH₂), 1052 (s, sh, C-OH), 1045 (vs, C-OH). δ_H (CDCl₃, 400 MHz): 1.55 (bs, 1H^a, OH); 1.67 (dddd, 1H^b, *J*= 14.6, 11.2, 8.3, 2.2,

H-2_A); 2.10 (dddd, 1H^b, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^a, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^b, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^b, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^b, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^b, J = 14.6, 8.1, 4.5, 2.2, H-2_B); 2.18 (m, 1H^b, H-3_A); 2.33 (td, 2H^b, J = 14.6, J = 14.6,

6.3, 1.1, H-5); 2.34 (m, 1H^b, H-3_B); 2.36 - 2.42 (m, 2H^b, H-5); 2.38 (tt, 2H^a, J = 7.2, 1.1, H-3); 2.52 (d, 1H^b, J = 3.6, OH); 2.65 (td, 2H^a, J = 7.2, 1.5, H-2); 3.59 (ddd, 1H^b, J = 12.6, 5.0, 3.9, H-6_A); 3.76 (m, 2H^a, H-6); 3.95 (ddd, 1H^b, J = 12.6, 9.3, 3.0, H-6_B); 4.69 (m, 1H^b, =CH_AH_B); 4.74 (h, 1H^b, J = 1.2, =CH_AH_B); 4.86 (q, 1H^a, J = 1.1, =CH_AH_B); 4.90 (m, 1H^a, =CH_AH_B); 5.17 (ddd, 1H^b, J = 8.3, 4.5, 3.6, H-1); 9.80 (t, 1H^a, J = 1.5, H-1). $\delta_{\rm C}$ (100 MHz, CDCl₃): 27.61 (CH₂); 30.78 (CH₂); 34.41 (CH₂); 39.07 (CH₂); 39.46 (CH₂); 41.68 (CH₂); 60.39 (CH₂); 61.35 (CH₂); 96.96 (CH); 111.30 (CH₂); 112.12 (CH₂); 144.20 (C); 148.91 (C); 201.86 (CH). MS (EI) *m/z*: 128 [M⁺] (20), 110 [M⁺-H₂O] (30), 70 (100). HRMS (EI) m/z: [M⁺] (C₇H₁₂O₂) calc.: 128.0837, found: 128.0836.

Analytical data for (E)-7-hydroxyhept-4-enal (10)⁶

Analytical data for mixture of

(Z)-3-Tosyl-1-(2-(trimethylsilyl)vinyl)-3-azabicyclo[3.1.0]hexane (13) and (E)-3-Tosyl-1-(2-(trimethylsilyl)vinyl)-3-azabicyclo[3.1.0]hexane (14)^{7,8}

13:14 5:1

TMS); 5.69 (d, 1H, J = 19.0, CH=CH-TMS); 7.34 (m, 2H, H arom.); 7.70 (m, 2H, H arom.). $\delta_{\rm C}$ (CDCl₃, 151 MHz): *Z* stereoisomer **13** 0.35 (CH₃); 15.81 (CH₂); 21.53 (CH₃); 23.56 (CH); 30.38 (C); 49.91 (CH₂); 52.96 (CH₂); 127.60 (CH); 129.63 (CH); 133.11 (C); 134.12 (CH); 143.53 (C); 144.89 (CH) *E* stereoisomer **14** -1.30 (CH₃); 15.85 (CH₂); 21.53 (CH₃); 24.87 (CH); 31.81 (C); 49.67 (CH₂); 50.73 (CH₂); 127.35 (CH); 127.60 (CH); 129.65 (CH); 133.40 (C); 143.48 (C); 145.68 (CH). MS (FAB) *m/z*: 336 [M+H⁺] (34), 73 [Me₃Si⁺] (100). HRMS (FAB) m/z: [M+H⁺] C₁₇H₂₆NO₂SSi calc.: 336.1454, found: 336.1445.

Analytical data for the desilylated minor product:

3-Tosyl-1-vinyl-3-azabicyclo[3.1.0]hexane

R_f [SiO₂, hexanes:ethyl acetate (80:20)]: 0.48. IR (CCl₄): v (cm⁻¹)
⁶ 1639 (m, C=C), 1599 (m), 1358 (vs, SO₂), 1169 (vs, SO₂), 1105 (s, benzene), 665 (vs, benzene). δ_H (CDCl₃, 600 MHz): 0.83 (dddd,

1H, $J = 8.0, 5.1, 1.1, 0.7, H-6_A$); 0.91 (dd, 1H, $J = 5.1, 4.4, H-6_B$); 1.43 (ddd, 1H, J = 8.0, 4.4, 3.9, H-5); 2.44 (s, 3H, CH₃); 3.09 (m, 1H, H-4_A); 3.14 (dd, 1H, $J = 9.0, 1.1, H-2_A$); 3.53 (d, 1H, $J = 9.2, H-4_B$); 3.56 (d, 1H, $J = 9.0, H-2_B$); 4.92 (dd, 1H, $J = 17.4, 1.0, =CH_AH_B$); 4.95 (dd, 1H, $J = 10.8, 1.0, =CH_AH_B$); 5.58 (dd, 1H, J = 17.4, 10.8, =CH); 7.34 (m, 2H, H arom.); 7.70 (m, 2H, H arom.). δ_C (CDCl₃, 151 MHz): 15.12 (CH₂); 21.53 (CH₃); 24.38 (CH); 29.98 (C); 49.69 (CH₂); 50.81 (CH₂); 112.67 (CH₂); 127.57 (CH); 129.65 (CH); 133.25 (C); 138.07 (CH); 143.53 (C). MS (EI) *m/z*: 263 [M⁺] (6), 155 [CH₃-*p*-C₆H₄-SO₂] (18), 139 [CH₃- *p*-C₆H₄-SO] (6), 91 (100). HRMS (EI) m/z: [M⁺] C₁₄H₁₇NO₂S calc.: 263.0980, found: 263.0976.

Analytical data for

2,2'-(ethyne-1,2-diyl)bis(1-(but-3-ynyl)pyridinium)bis(trifluoromethanesulfonate) (15)²

IR (KBr): \tilde{v} (cm⁻¹) 1030 s, 1164 s, 1225 s, 1255 vs, 1278 s, 1518 s, 1618 m, 3236 m. $\delta_{\rm H}$ (500 MHz, D₂O): 3.12 (t, 4H, J = 6.4, H-8); 5.08 (t, 4H, J = 6.4, H-7); 8.27 (ddd, 2H, J = 8.0, 6.2, 1.5; H-5); 8.55 (dd, 2H, J = 8.0, 1.5, H-3); 8.72 (td, 2H, J = 8.0, 1.4, H-4); 9.18 (ddd, 2H, J = 6.2, 1.4, 0.7, H-6). $\delta_{\rm C}$ (125.7 MHz, D₂O): 22.74 (CH₂); 61.54 (CH₂); 76.87 (t, J = 40, CH); 80.37 (t, J = 8, C); 93.80 (C); 122.36 (q, J = 318, CF₃); 132.27

(CH); 136.89 (CH); 137.07 (C); 149.05 (CH); 150.31 (CH). MS (ES^+) m/z: 435 $[(\text{M-OTf})^+]$ (100), 349 (45), 317 (70), 303 (50), 286 (30). HRMS (ES^+) m/z: $[(\text{M-OTf})^+]$ C₂₁H₁₈F₃N₂O₃S calc.: 435.0990, found: 435.1002. m.p. 147-148 °C.

Analytical data for

6,7,12,13-Tetrahydro-5,14-diaza[5]helicinium trifluoromethanesulfonate (16)²

IR (KBr): \tilde{v} (cm⁻¹) 1030 s, 1162 s, 1263 vs, 1510 m, 1625 m. $\delta_{\rm H}$ (600 MHz, D₂O): 3.24-3.44 (m, 4H, H-8); 4.79-5.04 (m, 4H, H-7); 7.74 (s, 2H, H-10); 7.91 (ddd, 2H, J = 7.7, 6.2, 1.4, H-5); 7.94 (dd, 2H, J = 8.3, 1.4, H-3); 8.21 (td, 2H, J = 8.0, 1.4, H-4); 8.93 (ddd, 2H, J = 6.2, 1.4, 0.5, H-6). $\delta_{\rm C}$ (151 MHz, D₂O): $\delta = 29.91$ (CH₂); 57.88 (CH₂); 122.33 (q, J = 317,

CF₃); 128.60 (C); 129.11 (CH); 132.40 (CH); 135.25 (CH); 143.24 (C); 147.59 (CH); 148.28 (C); 149.67 (CH). MS (EI⁺) m/z: 435 [(M-OTf)⁺] (100), 416 (55), 372 (30), 343 (25), 332 (60). HRMS (EI⁺) m/z: [(M-OTf)⁺] C₂₁H₁₈F₃N₂O₃S calc.: 435.0990, found: 435.0975. m.p. 241-244 °C.

140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Procedure for yield determination in transformation $15 \rightarrow 16$

One drop of acetone (0.01 ml) was added directly to the bottom of a RBF containing $[Cp^*Ru(cod)Cl]$ **1** (1.6 mg, 4.28 µmol, 25 mol%). A solution of 2,2'-(ethyne-1,2-diyl)bis(1-(but-3-ynyl)pyridinium)bis (trifluoromethanesulfonate) **15** (10.0 mg, 17.1 µmol, 1 equiv)² in *E. coli* DH5a cell lysate (1.5 ml) was added to the mixture of catalyst and acetone. The resulting solution was stirred at 37 °C for 36 h. The yield of this reaction was determined by ¹H NMR with comparison to DMSO as an internal standard.

Preparation of the internal standard

Step 1) 10 μ l of DMSO was diluted to 1 ml with D₂O.

Step 2) A 50 μ l amount of the standard solution prepared in Step 1 was diluted to 2 ml with D₂O.

<u>Step 3</u>) Step 2 was repeated 3 more times, thus, four separate 2 ml solutions comprised of 7.042×10^{-6} mol of DMSO in D₂O were prepared.

Preparation of the sample

<u>Step 1</u>) The crude reaction mixture from transformation $15 \rightarrow 16$ vide supra was diluted to a volume of 20 ml.

<u>Step 2</u>) This was divided into 2 fractions of 2 ml each (samples 2A and 2B), 2 fractions of 4 ml each (samples 4A and 4B), and 1 fraction of 8 ml.

Step 3) The separate fractions were evaporated to dryness in vacuo.

<u>Step 4</u>) The samples 2A, 2B, 4A, and 4B were dissolved separately in the four solutions of DMSO in D_2O , see "Preparation of the internal standard" above.

<u>Step 5</u>) ¹H NMR determined the amount of helquat **16** in samples 2A, 2B, 4A, and 4B *via* comparison of the integrations of peaks corresponding to helquat **16** to the peak corresponding to the DMSO internal standard.

Fig 3. ¹H NMR (600 MHz, D₂O) spectrum of helquat sample 4B

ppm

	H-6 (%)	H-4 (%)	H-3 & H-5 (%)	H-10 (%)
sample	[8.93 ppm]	[8.20 ppm]	[7.89-7.95 ppm]	[7.73 ppm]
2A	3.767	4.038	8.227	3.829
2B	4.294	4.535	8.529	3.952
4A	8.644	9.079	17.432	8.316
4B	7.768	8.178	16.075	7.559

Table 1. Integrations of helquat 16 protons relative to DMSO internal standard

Table 2. Amount (molar%) of 16 relative to DMSO internal standard (7.042×10⁻⁶ mol) based on ¹H NMR integrations

sample	H-6 (%)	H-4 (%)	H-3 & H-5 (%)	H-10 (%)	average (%)	16 (mols)	Yield 16 (%)
2A	11.301	12.114	24.681	11.487	11.917	8.389 ×10 ⁻⁷	49.060
2B	12.882	13.605	25.587	11.856	12.786	9.001 ×10 ⁻⁷	52.639
4A	25.932	27.237	52.296	24.948	26.083	1.836 ×10 ⁻⁶	53.690
4B	23.304	24.534	48.225	22.677	23.748	1.672 ×10 ⁻⁶	48.885

From the data presented above (Table 1 and Table 2), obtained from ¹H NMR spectra of samples 2A, 2B, 4A, and 4B, (see Fig. 1 and Fig. 2 for two representative spectra) we can estimate that the yield of the reaction is between 48% and 54% with a mean value of 51%.

Determination of yield for transformation $15 \rightarrow 16$ after 2.5 hours

The procedure is performed exactly as outlined above with a reaction time of 2.5 h instead of 36 h. We estimate that the yield of the reaction after 2.5 h is between 32% and 36% with a mean value of 33%.

References

1. S. E. Gibson, K. A. C. Kaufmann, P. R. Haycock, A. J. P. White, D.J. Hardick and M. J. Tozer, *Organometallics* 2007, **26**, 1578-1580.

2. L. Adriaenssens, L. Severa, T. Šálová, I. Císařová, R. Pohl, D. Šaman, S. V. Rocha, N. S. Finney, L. Pospíšil, P. Slavíček and F. Teplý, *Chem.-Eur. J.* 2009, **15**, 1072-1076.

3. V. Cadierno, S. E. García-Garrido and J. Gimeno, J. Am. Chem. Soc. 2006, 128, 15094-15095.

4. The melting point matches well with that found in the literature. 192-193 °C. W. E. Parham and F. C. Loew, *J. Org. Chem.* 1958, **23**, 1705-1708.

5. Y. Yamamoto, K. Kinpara, R. Ogawa, H. Nishiyama and K. Itoh, Chem. -Eur. J. 2006, 12, 5618-5631.

6. S. Dérien, D. Jan and P. H. Dixneuf, Tetrahedron 1996, 52, 5511-5524.

7. F. Monnier, C. Vovard-Le Bray, D. Castillo, V. Aubert, S. Dérien, P. H. Dixneuf, L. Toupet, A. Ienco and C. Mealli, J. Am. Chem. Soc. 2007, **129**, 6037-6049.

8. F. Monnier, D. Castillo, S. Dérien, L. Toupet and P. H. Dixneuf, Angew. Chem. Int. Ed. 2003, 42, 5474-5477.