Collect. Czech. Chem. Commun.
2011, 76, 937-946
https://doi.org/10.1135/cccc2011067
Published online 2011-07-07 13:15:09
Correlation of the first reduction potential of selected radiosensitizers determined by cyclic voltammetry with theoretical calculations
Miroslav Gála,*, Viliam Kolivoškaa, Marta Ambrováb, Ján Hívešb and Romana Sokolováa
a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
b Institute of Inorganic Chemistry, Technology and Materials, Department of Inorganic Technology, Faculty of Chemical and Food Technology, STU Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
References
1. Collect. Czech. Chem. Commun. 2009, 74, 1571.
< M., Híveš J., Sokolová R., Hromadová M., Kolivoška V., Pospíšil L.: https://doi.org/10.1135/cccc2009118>
2. Gál M., Híveš J., Sokolová R., Hromadová M., Bulíčkova J., Kolivoška V., Pospíšil L.: Electrochemistry of Selected Radiosensitizer-Etanidazole. XXX. Moderní elektrochemické metody, Jetřichovice May 24-28, 2010 (J. Barek and T. Navrátil, Eds), p. 55. Best Servis, Ústí nad Labem 2010.
3. Bioelectrochemistry 2010, 78, 118.
< M., Hromadová M., Pospíšil L., Híveš J., Sokolová R., Kolivoška V., Bulíčková J.: https://doi.org/10.1016/j.bioelechem.2009.08.008>
4. Biochem. Pharmacol. 1999, 57, 549.
< C., Bettache N., Cenas N., Krauth-Siegel R., Chauviere G., Bakalara N., Perie J.: https://doi.org/10.1016/S0006-2952(98)00324-4>
5. J. Electroanal. Chem. 1995, 381, 215.
< L. J., Garcia F., Dominguez M. M., Delafuente J., Squella J. A.: https://doi.org/10.1016/0022-0728(94)03647-L>
6. Brit. J. Cancer 1982, 45, 869.
< F. A., Denekamp J., Randhawa V. S.: https://doi.org/10.1038/bjc.1982.139>
7. Rep. Prog. Phys. 1978, 41, 259.
< P.: https://doi.org/10.1088/0034-4885/41/2/002>
8. Environ. Health Persp. 1985, 64, 309.
< P.: https://doi.org/10.1289/ehp.8564309>
9. Electroanalysis 2009, 21, 309.
< T., Barek J., Fasinová-Sebková S.: https://doi.org/10.1002/elan.200804383>
10. Electrochim. Acta 1997, 42, 2305.
< J. A., Jimenez G., Bollo S., Nunezvergara L. J.: https://doi.org/10.1016/S0013-4686(96)00406-9>
11. Chem.-Biol. Interact. 1996, 99, 227.
< J. A., Letelier M. E., Lindermeyer L., Nunezvergara L. J.: https://doi.org/10.1016/0009-2797(95)03672-5>
12. Chem.-Biol. Interact. 1993, 89, 197.
< J. A., Solabarrieta C., Nunezvergara L. J.: https://doi.org/10.1016/0009-2797(93)90009-N>
13. Biochem. Pharmacol. 1995, 50, 1367.
< J. H., Edwards D. I.: https://doi.org/10.1016/0006-2952(95)02010-1>
14. Environ. Chem. Lett. 2011, 9, 83.
< J., Cabalkova D., Fischer J., Navrátil T., Pecková K., Yosypchuk B.: https://doi.org/10.1007/s10311-009-0250-x>
15. Electroanalysis 2011, 23, 129.
< V., Navrátil T., Danhel A., Dedik J., Krejčová Z., Škvorová L., Tvrdíková J., Barek J.: https://doi.org/10.1002/elan.201000428>
16. Electroanalysis 2010, 22, 2034.
< V., Navrátil T., Polašková P., Barek J.: https://doi.org/10.1002/elan.201000084>
17. Anal. Lett. 2009, 42, 2339.
< K., Barek J., Navrátil T., Yosypchuk B., Zíma J.: https://doi.org/10.1080/00032710903142442>
18. Chem. Listy 2009, 103, 236.
D., Barek J., Fischer J., Navrátil T., Pecková K., Yosypchuk B.:
19. Collect. Czech. Chem. Commun. 2009, 74, 1697.
< K., Vrzalová L., Bencko V., Barek J.: https://doi.org/10.1135/cccc2009112>
20. Biochem. Biophys. Res. Commun. 1976, 72, 824.
< G. E., Clarke E. D., Jacobs R. S., Stratford I. J., Wallace R. G., Wardman P., Watts M. E.: https://doi.org/10.1016/S0006-291X(76)80207-0>
21. J. Phys. Chem. A 2002, 106, 1596.
< X. F., Cai Z. L., Sevilla M. D.: https://doi.org/10.1021/jp013337b>
22. Bioelectrochem. Bioenerg. 1995, 36, 171.
< J. R., Foye W. O., Kovacic P.: https://doi.org/10.1016/0302-4598(94)01766-T>
23. Neoplasma 1996, 43, 113.
A., Novotný L., Blesová M.:
24. Phys. Chem. Chem. Phys. 2006, 8, 3172.
< Y., Molnar L. F., Jung Y., Kussmann J., Ochsenfeld C., Brown S. T., Gilbert A. T. B., Slipchenko L. V., Levchenko S. V., O’Neill D. P., DiStasio R. A., Lochan R. C., Wang T., Beran G. J. O., Besley N. A., Herbert J. M., Lin C. Y., Van Voorhis T., Chien S. H., Sodt A., Steele R. P., Rassolov V. A., Maslen P. E., Korambath P. P., Adamson R. D., Austin B., Baker J., Byrd E. F. C., Dachsel H., Doerksen R. J., Dreuw A., Dunietz B. D., Dutoi A. D., Furlani T. R., Gwaltney S. R., Heyden A., Hirata S., Hsu C. P., Kedziora G., Khalliulin R. Z., Klunzinger P., Lee A. M., Lee M. S., Liang W., Lotan I., Nair N., Peters B., Proynov E. I., Pieniazek P. A., Rhee Y. M., Ritchie J., Rosta E., Sherrill C. D., Simmonett A. C., Subotnik J. E., Woodcock H. L., Zhang W., Bell A. T., Chakraborty A. K., Chipman D. M., Keil F. J., Warshel A., Hehre W. J., Schaefer H. F., Kong J., Krylov A. I., Gill P. M. W., Head-Gordon M.: https://doi.org/10.1039/b517914a>
25. J. Brazil. Chem. Soc. 1999, 10, 354.
< Y., Chong D. P.: https://doi.org/10.1590/S0103-50531999000500003>
26. Int. J. Quantum Chem. 2006, 106, 2073.
< J. F., Zhu S. L., Zhou Z. Y., Wu Q. Y., Zhao G.: https://doi.org/10.1002/qua.20918>
27. Bull. Korean Chem. Soc. 2003, 24, 792.
J. E., Choi W. Y., Mhin B. J.:
28. Biophys. Chem. 2004, 110, 267.
< T. C., de Alencastro R. B., La-Scalea M. A., Figueroa-Villar J. D.: https://doi.org/10.1016/j.bpc.2004.03.002>
29. Int. J. Radiat. Biol. 1979, 36, 85.
< A., Berrilli G., Roffia S.: https://doi.org/10.1080/09553007914550841>
30. Int. J. Radiat. Biol. 1981, 39, 649.
< Y. G., Debueren A., Alcala R., Alvarez M. V.: https://doi.org/10.1080/09553008114550771>
31. J. Electroanal. Chem. 1984, 162, 335.
< D., Resibois B., Vergoten G., Moschetto Y.: https://doi.org/10.1016/S0022-0728(84)80176-X>
32. Bioorg. Med. Chem. 2001, 9, 453.
< S., Nagasawa H., Yamashita M., Masui M., Kuwasaka H., Oshodani T., Uto Y., Inomata T., Oka S., Inayama S., Hori H.: https://doi.org/10.1016/S0968-0896(00)00265-0>
33. Biochem. Pharmacol. 1986, 35, 43.
< P., Koch R. L., Yeung T. C., Chrystal E. J. T., Beaulieu B. B., Mclafferty M. A., Sudlow G.: https://doi.org/10.1016/0006-2952(86)90553-8>