Collect. Czech. Chem. Commun. 2011, 76, 645-667
https://doi.org/10.1135/cccc2011053
Published online 2011-05-03 12:01:21

Do the mercaptocarbene (H–C–S–H) and selenocarbene (H–C–Se–H) congeners of hydroxycarbene (H–C–O–H) undergo 1,2-H-tunneling?

János Sarkaa, Attila G. Császára,* and Peter R. Schreinerb,*

a Laboratory of Molecular Spectroscopy and Department of Physical Chemistry, Institute of Chemistry, Loránd Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary
b Institute für Organische Chemie der Justus-Liebig-Universität, Heinrich-Buff-Ring 58, D-35292 Giessen, Germany

References

1. Schreiner P. R., Reisenauer H. P., Pickard F. C., Simmonett A. C., Allen W. D., Mátyus E., Császár A. G.: Nature 2008, 453, 906. <https://doi.org/10.1038/nature07010>
2. Havlas Z., Kovář T., Zahradník R.: J. Mol. Struct. (THEOCHEM) 1986, 136, 239. <https://doi.org/10.1016/0166-1280(86)80139-7>
3. Judge R. H., Moule D. C., King G. W.: J. Mol. Spectrosc. 1980, 81, 37. <https://doi.org/10.1016/0022-2852(80)90328-8>
4. Hachey M. R. J., Grein F.: Chem. Phys. 1995, 197, 61. <https://doi.org/10.1016/0301-0104(95)00154-G>
5. Kaiser R. I., Ochsenfeld C., Head-Gordon M., Lee Y. T.: Science 1998, 279, 1181. <https://doi.org/10.1126/science.279.5354.1181>
6. Ochsenfeld C., Kaiser R. I., Lee Y. T., Head-Gordon M.: J. Chem. Phys. 1999, 110, 9982. <https://doi.org/10.1063/1.478871>
7. Roothaan C. C. J.: Rev. Mod. Phys. 1951, 23, 69. <https://doi.org/10.1103/RevModPhys.23.69>
8. Møller C., Plesset M. S.: Phys. Rev. 1934, 46, 618. <https://doi.org/10.1103/PhysRev.46.618>
9. Čížek J.: J. Chem. Phys. 1966, 45, 4256. <https://doi.org/10.1063/1.1727484>
10. Crawford T. D., Schaefer H. F.: Rev. Comput. Chem. 2000, 14, 33. <https://doi.org/10.1002/9780470125915.ch2>
11. Tachibana A., Okazaki I., Koizumi M., Hori K., Yamabe T.: J. Am. Chem. Soc. 1985, 107, 1190. <https://doi.org/10.1021/ja00291a018>
12. Cox A. P., Hubbard S. D., Kato H.: J. Mol. Spectrosc. 1982, 93, 196. <https://doi.org/10.1016/0022-2852(82)90283-1>
13. Johnson D. R., Powell F. X.: Science 1970, 169, 679. <https://doi.org/10.1126/science.169.3946.679>
14. Johnson D. R., Powell F. X., Kirchhoff W. H.: J. Mol. Spectrosc. 1971, 39, 136. <https://doi.org/10.1016/0022-2852(71)90284-0>
15. Maeda A., Medvedev I. R., Winnewisser M., DeLucia F. C., Herbst E., Müller H. S. P., Koerber M., Endres C. P., Schlemmer S.: Astrophys. J. Suppl. Ser. 2008, 176, 543. <https://doi.org/10.1086/528684>
16. Beers Y., Klein G. P., Kirchhoff W. H., Johnson D. R.: J. Mol. Spectrosc. 1972, 44, 553. <https://doi.org/10.1016/0022-2852(72)90263-9>
17. Johns J. W. C., Olson W. B.: J. Mol. Spectrosc. 1971, 39, 479. <https://doi.org/10.1016/0022-2852(71)90219-0>
18. Turner P. H., Halonen L., Mills I. M.: J. Mol. Spectrosc. 1981, 88, 402. <https://doi.org/10.1016/0022-2852(81)90190-9>
19. Torres M., Safarik I., Clement A., Strausz O. P.: Can. J. Chem. 1982, 60, 1187. <https://doi.org/10.1139/v82-176>
20. Flaud J. M., Lafferty W. J., Perrin A., Kim Y. S., Beckers H., Willner H.: J. Quant. Spectrosc. Radiat. Transfer 2008, 109, 995. <https://doi.org/10.1016/j.jqsrt.2007.11.004>
21. Harmony M. D., Laurie V. W., Kuczkowski R. L., Schwendeman R. H., Ramsay D. A., Lovas F. J., Lafferty W. J., Maki A. G.: J. Phys. Chem. Ref. Data 1979, 8, 619. <https://doi.org/10.1063/1.555605>
22. Fabricant B., Krieger D., Muenter J. S.: J. Chem. Phys. 1977, 67, 1576. <https://doi.org/10.1063/1.434988>
23. Martin J. M. L., Francois J. P., Gijbels R.: J. Mol. Spectrosc. 1994, 168, 363. <https://doi.org/10.1006/jmsp.1994.1285>
24. Carter S., Handy N. C.: J. Mol. Spectrosc. 1998, 192, 263. <https://doi.org/10.1006/jmsp.1998.7692>
25. Léonard C., Chambaud G., Rosmus P., Carter S., Handy N. C.: Phys. Chem. Chem. Phys. 2001, 3, 508. <https://doi.org/10.1039/b008454i>
26. Schreiner P. R., Reisenauer H. P., Romanski J., Mloston G.: Angew. Chem. Int. Ed. 2009, 48, 8133. <https://doi.org/10.1002/anie.200903969>
27. Rzepa H.: J. Chem. Theory Comput. 2010, 7, 97. <https://doi.org/10.1021/ct100470g>
28. Brown R. D., Godfrey P. D., McNaughton D.: Chem. Phys. Lett. 1985, 118, 29. <https://doi.org/10.1016/0009-2614(85)85259-3>
29. Cox P., Hubbard S. D., Kato H.: J. Mol. Spectrosc. 1982, 93, 196. <https://doi.org/10.1016/0022-2852(82)90283-1>
30. Bock H., Aygen S., Rosmus P., Solouki B., Weissflog E.: Chem. Ber. 1984, 117, 187. <https://doi.org/10.1002/cber.19841170115>
31. Glinski R. J., Taylor C. D., Martin H. R.: J. Phys. Chem. 1991, 95, 6159. <https://doi.org/10.1021/j100169a021>
32. Beckers H., Kim Y. S., Willner H.: Inorg. Chem. 2008, 47, 1693. <https://doi.org/10.1021/ic702237v>
33. Collins S., Back T. G., Rauk A.: J. Am. Chem. Soc. 1985, 107, 6589. <https://doi.org/10.1021/ja00309a027>
34. Yadav V. K., Yadav A., Poirier R. A.: J. Mol. Struct. 1989, 186, 101.
35. Brown R. D., Godfrey P. D., McNaughton D.: J. Mol. Spectrosc. 1986, 120, 292. <https://doi.org/10.1016/0022-2852(86)90005-6>
36. Kwiatkowski J. S., Leszczynski J.: Mol. Phys. 1994, 81, 119. <https://doi.org/10.1080/00268979400100081>
37. Leszczynski J., Kwiatkowski J. S., Leszczynska D.: Chem. Phys. Lett. 1992, 194, 157. <https://doi.org/10.1016/0009-2614(92)85526-G>
38. Judge R. H., Moule D. C.: J. Am. Chem. Soc. 1984, 106, 5407. <https://doi.org/10.1021/ja00331a004>
39. Yamada M., Osamura Y., Kaiser R. I.: Astron. Astrophys. 2002, 395, 1031. <https://doi.org/10.1051/0004-6361:20021328>
40. Császár A. G., Allen W. D., Yamaguchi Y., Schaefer H. F. in: Computational Molecular Spectroscopy (P. Jensen and P. R. Bunker, Eds), pp. 15–68. Wiley, New York 2000.
41. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
42. Kendall R. A., Dunning T. H., Jr., Harrison R.: J. Chem. Phys. 1992, 96, 6796. <https://doi.org/10.1063/1.462569>
43. Wilson A. K., van Mourik T., Dunning T. H., Jr.: J. Mol. Struct. 1996, 388, 339.
44. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1995, 103, 4572. <https://doi.org/10.1063/1.470645>
45. Kállay M., Surján P. R.: J. Chem. Phys. 2001, 115, 2945. <https://doi.org/10.1063/1.1383290>
46. Purvis G. D., Bartlett R. J.: J. Chem. Phys. 1982, 76, 1910. <https://doi.org/10.1063/1.443164>
47a. Noga J., Bartlett R. J.: J. Chem. Phys. 1987, 86, 7041. <https://doi.org/10.1063/1.452353>
47b. Erratum: Noga J., Bartlett R. J.: J. Chem. Phys. 1988, 89, 3401. <https://doi.org/10.1063/1.455742>
47c. Scuseria G. E., Schaefer H. F.: Chem. Phys. Lett. 1988, 152, 382. <https://doi.org/10.1016/0009-2614(88)80110-6>
48. Raghavachari K., Trucks G. W., Pople J. A., Head-Gordon M.: Chem. Phys. Lett. 1989, 157, 479. <https://doi.org/10.1016/S0009-2614(89)87395-6>
49. Kállay M., Gauss J.: J. Chem. Phys. 2005, 123, 214105. <https://doi.org/10.1063/1.2121589>
50. Bomble Y., Kállay M., Gauss J., Stanton J. F.: J. Chem. Phys. 2005, 123, 054101. <https://doi.org/10.1063/1.1950567>
51. Császár A. G., Allen W. D., Schaefer H. F.: J. Chem. Phys. 1998, 108, 9751. <https://doi.org/10.1063/1.476449>
52. Allen W. D., East A. L. L., Császár A. G. in: Structures and Conformations of Non-Rigid Molecules (J. Laane, M. Dakkouri, B. van der Veken and H. Oberhammer, Eds), p. 343. Kluwer, Dordrecht 1993.
53. Császár A. G., Tarczay G., Leininger M. L., Polyansky O. L., Tennyson J., Allen W. D. in: Spectroscopy from Space ( J. Demaison and K. Sarka, Eds), pp. 317–339. Kluwer, Dordrecht 2001.
54. Furtenbacher T., Czakó G., Sutcliffe B. T., Császár A. G., Szalay V.: J. Mol. Struct. 2006, 780–781, 283. <https://doi.org/10.1016/j.molstruc.2005.06.052>
55. Ruscic B., Boggs J. E., Burcat A., Császár A. G., Demaison J., Janoschek R., Martin J. M. L., Morton M., Rossi M. J., Stanton J. F., Szalay P. G., Westmoreland P. R., Zabel F., Bérces T.: J. Phys. Chem. Ref. Data 2005, 34, 573. <https://doi.org/10.1063/1.1724828>
56a. Tarczay G., Miller T. A., Czakó G., Császár A. G.: Phys. Chem. Chem. Phys. 2005, 7, 2881. <https://doi.org/10.1039/b506790a>
56b. Erratum: Tarczay G., Miller T. A., Czakó G., Császár A. G.: Phys. Chem. Chem. Phys. 2008, 10, 7324.
57. Cowan R. D., Griffin D. C.: J. Opt. Soc. Am. 1976, 66, 1010. <https://doi.org/10.1364/JOSA.66.001010>
58. Tarczay G., Császár A. G., Klopper W., Quiney H. M.: Mol. Phys. 2001, 99, 1769. <https://doi.org/10.1080/00268970110073907>
59. Scuseria G. E.: J. Chem. Phys. 1991, 94, 442. <https://doi.org/10.1063/1.460359>
60. Watts J. D., Gauss J., Bartlett R. J.: J. Chem. Phys. 1993, 98, 8718. <https://doi.org/10.1063/1.464480>
61. Gauss J., Stanton J. F.: Chem. Phys. Lett. 1997, 276, 70. <https://doi.org/10.1016/S0009-2614(97)00811-7>
62. Stanton J. F., Gauss J., Harding M. E. and Szalay P. G., with contributions from Auer A. A., Bartlett R. J., Benedikt U., Berger C., Bernholdt D. E., Bomble Y. J., Cheng L., Christiansen O., Heckert M., Heun O., Huber C., Jagau T.-C., Jonsson D., Jusélius J., Klein K., Lauderdale W. J., Matthews D. A., Metzroth T., O’Neill D. P., Price D. R., Prochnow E., Ruud K., Schiffmann F., Schwalbach W., Stopkowicz S., Tajti A., Vázquez J., Wang F., Watts J. D.: CFOUR, A Quantum Chemical Program Package; the integral packages MOLECULE (Almlöf J., Taylor P. R.), PROPS (Taylor P. R.), ABACUS (Helgaker T., Jensen H. J. Aa., Jørgensen P. and Olsen J.), and ECP routines by Mitin A. V. and van Wüllen C. For the current version, see http://www.cfour.de.
63. Kállay M.: MRCC, A String-Based Quantum Chemical Program Suite. See www.mrcc.hu for the latest version.
64. Liboff R. L.: Introductory Quantum Mechanics. Addison–Wesley, Reading (MA) 2003.
65. Razavy M.: Quantum Theory of Tunneling. World Scientific, Singapore 2003.
66. Fukui K.: J. Phys. Chem. 1970, 74, 4161. <https://doi.org/10.1021/j100717a029>
67. Gonzalez C., Schlegel H. B.: J. Phys. Chem. 1990, 94, 5523. <https://doi.org/10.1021/j100377a021>
68. Miller W. H., Handy N. C., Adams J. E.: J. Chem. Phys. 1980, 72, 99. <https://doi.org/10.1063/1.438959>
69. Allen W. D., Bődi A., Szalay V., Császár, A. G.: J. Chem. Phys. 2006, 124, 224310. <https://doi.org/10.1063/1.2207614>
70. Eckart C.: Phys. Rev. 1930, 35, 1303. <https://doi.org/10.1103/PhysRev.35.1303>
71. MATHEMATICA, Version 4. Wolfram Research, Inc., Champaign (IL) 1999.
72. Kojima T., Nishikawa T.: J. Phys. Soc. Jpn. 1957, 12, 680. <https://doi.org/10.1143/JPSJ.12.680>
73. Demaison J., Boggs J. E., Császár A. G. (Eds): Equilibrium Molecular Structures. CRC Press, Boca Raton 2011.
74. Gillespie R. J., Nyholm R. S.: Q. Rev. 1957, 11, 339. <https://doi.org/10.1039/qr9571100339>
75. Duncan J. L.: Mol. Phys. 1974, 28, 1177. <https://doi.org/10.1080/00268977400102501>
76. Seppelt K.: Pure Appl. Chem. 1987, 59, 1057. <https://doi.org/10.1351/pac198759081057>
77a. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
77b. Lee C., Yang W., Parr R. G.: Phys. Rev. B 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
78a. Krishnan R., Binkley J. S., Seeger R., Pople J. A.: J. Chem. Phys. 1980, 72, 650. <https://doi.org/10.1063/1.438955>
78b. Clark T., Chandrasekhar J., Spitznagel G. W., Schleyer P. v. R.: J. Comput. Chem. 1983, 4, 294. <https://doi.org/10.1002/jcc.540040303>
79. Lide D. R. (Ed.): CRC Handbook of Chemistry and Physics, 88th ed. CRC Press Inc., Boca Raton, FL 2007.
80. McGurk J., Tigelaar H. L., Rock S. L., Norris C. L., Flygare W. H.: J. Chem. Phys. 1973, 58, 1420. <https://doi.org/10.1063/1.1679374>
81. Czakó G., Nagy B., Tasi G., Somogyi A., Šimunek J., Noga J., Braams B. J., Bowman J. M., Császár A. G.: Int. J. Quantum. Chem. 2009, 109, 2393. <https://doi.org/10.1002/qua.22009>
82. Gerry M. C. L., Lees R. M., Winnewisser G.: J. Mol. Spectrosc. 1976, 61, 231. <https://doi.org/10.1016/0022-2852(76)90245-9>
83. Huber K. P., Herzberg G.: Constants of Diatomic Molecules. Van Nostrand Reinhold, New York 1979.
84. Schreiner P. R., Reisenauer H. P.: ChemPhysChem 2006, 7, 880. <https://doi.org/10.1002/cphc.200500555>