Collect. Czech. Chem. Commun. 2011, 76, 2023-2083
https://doi.org/10.1135/cccc2011099
Published online 2012-02-02 12:26:06

Recent developments in syntheses of the post-secodine indole alkaloids. Part III: Rearranged alkaloid types

Josef Hájíčeka,b

a Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12840 Prague 2, Czech Republic
b Synthesis Development Group II, Zentiva, k.s., U kabelovny 130, 102 37 Prague 10, Czech Republic

References

1. Hájíček J.: Collect. Czech. Chem. Commun. 2004, 69, 1681. <https://doi.org/10.1135/cccc20041681>
2. Hájíček J.: Collect. Czech. Chem. Commun. 2007, 72, 821. <https://doi.org/10.1135/cccc20070821>
3. LeMen J., Taylor W. I.: Experientia 1965, 21, 508. <https://doi.org/10.1007/BF02138961>
4. Hugel G., Lévy J.: J. Org. Chem. 1984, 49, 3275. <https://doi.org/10.1021/jo00192a005>
5. Hugel G., Lévy J.: J. Org. Chem. 1986, 51, 1594. <https://doi.org/10.1021/jo00359a040>
6. Palmisano G., Danieli B., Lesma G., Riva R., Riva S., Demartin F., Masciocchi N.: J. Org. Chem. 1984, 49, 4138.
7. Takayama H., Sakai S.-I. in: The Alkaloids: Chemistry and Biology (Cordell G. A., Ed.), Vol. 50, Chap. 11, p. 415. Academic Press, New York 1998.
8. Saxton J. E. in: The Alkaloids: Chemistry and Biology (Cordell G. A., Ed.), Vol. 51, Chap. 1, p. 1. Academic Press, New York 1998.
9. Overman L. E., Robertson G. M., Robichaud A. J.: J. Am. Chem. Soc. 1991, 113, 2598. <https://doi.org/10.1021/ja00007a038>
10. Overman L. E., Robertson G. M., Robichaud A. J.: J. Org. Chem. 1989, 54, 1236. <https://doi.org/10.1021/jo00267a003>
11. Overman L. E.: Tetrahedron 2009, 65, 6432. <https://doi.org/10.1016/j.tet.2009.05.067>
12. Overman L. E.: Acc. Chem. Res. 1992, 25, 352. <https://doi.org/10.1021/ar00020a005>
13. Bernauer K., Englert G., Vetter W., Weiss E.: Helv. Chim. Acta 1969, 52, 1886. <https://doi.org/10.1002/hlca.19690520714>
14. Oberhaensli W. E.: Helv. Chim. Acta 1969, 52, 1905. <https://doi.org/10.1002/hlca.19690520715>
15. Brandes S., Selig P., Bach T.: Synlett 2004, 2588.
16. Selig P., Bach T.: J. Org. Chem. 2006, 71, 5662. <https://doi.org/10.1021/jo0606608>
17. Selig P., Bach T.: Angew. Chem., Int. Ed. 2008, 47, 5082. <https://doi.org/10.1002/anie.200800693>
18. Selig P., Herdtweck E., Bach T.: Chem. Eur. J. 2009, 15, 3509. <https://doi.org/10.1002/chem.200802383>
19. Bach T., Hehn J. P: Angew. Chem., Int. Ed. 2011, 50, 1000. <https://doi.org/10.1002/anie.201002845>
20. Hayashi Y., Inagaki F., Mukai C.: Org. Lett. 2011, 13, 1778. <https://doi.org/10.1021/ol200311y>
21. Rawal V. H., Michoud C., Monestel R. F.: J. Am. Chem. Soc. 1993, 115, 3031. <https://doi.org/10.1021/ja00060a083>
22. Denmark S. E., Cottell J. J.: Adv. Synth. Catal. 2006, 348, 2397. <https://doi.org/10.1002/adsc.200600301>
23. Zhou Y. L., Ye J. H., Li Z. M., Huang Z. H.: Planta Med. 1988, 54, 315. <https://doi.org/10.1055/s-2006-962443>
24. Denmark S. E., Cottell J. J. in: Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products (Chemistry of Heterocyclic Compounds, Vol. 59, A. Padwa and W. H. Pearson, Eds), Chap. 2, p. 83. Wiley, Chichester 2003.
25. Schultz A. G., Dai M.: Tetrahedron Lett. 1999, 40, 645. <https://doi.org/10.1016/S0040-4039(98)02510-6>
26. Schultz A. G.: Chem. Commun. 1999, 1263. <https://doi.org/10.1039/a901759c>
27. Coldham I., Burrell A. J. M., White L. E., Adams H., Oram N.: Angew. Chem., Int. Ed. 2007, 46, 6159. <https://doi.org/10.1002/anie.200701943>
28. Burrell A. J. M., Coldham I., Watson L., Oram N., Pilgram C. D., Martin N. G.: J. Org. Chem. 2009, 74, 2290. <https://doi.org/10.1021/jo8019913>
29. Goh S. H., Ali A. R. M.: Tetrahedron Lett. 1986, 27, 2501. <https://doi.org/10.1016/S0040-4039(00)84568-2>
30. Goh S. H., Ali A. R. M., Wong W. H: Tetrahedron 1989, 45, 7899. <https://doi.org/10.1016/S0040-4020(01)85802-6>
31. Hugel G., Lévy J., Le Men J.: Tetrahedron Lett. 1974, 3109. <https://doi.org/10.1016/S0040-4039(01)91835-0>
32. Abe F., Yamauchi T.: Phytochemistry 1994, 35, 169. <https://doi.org/10.1016/S0031-9422(00)90527-2>
33. Magolan J., Carson C. A., Kerr M. A.: Org. Lett. 2008, 7, 1437. <https://doi.org/10.1021/ol800259s>
34. Kam T.-S., Subramanian G., Lim K.-H., Choo Y.-M.: Tetrahedron Lett. 2004, 45, 5995. <https://doi.org/10.1016/j.tetlet.2004.06.039>
35. Nakajima R., Ogino T., Yokoshima S., Fukuyama T.: J. Am. Chem. Soc. 2010, 132, 1236. <https://doi.org/10.1021/ja9103233>
36. Desmaële D., d’Angelo J.: J. Org. Chem. 1994, 59, 2292. <https://doi.org/10.1021/jo00088a008>
37. Biechy A., Zard S. Z.: Org. Lett. 2009, 11, 2800. <https://doi.org/10.1021/ol900996k>
38. Bennasar M.-L., Roca T., García-Díaz D.: J. Org. Chem. 2007, 72, 4562. <https://doi.org/10.1021/jo070322m>
39. Randriambola L., Quirion J.-C., Kan-Fan C., Husson H.-P.: Tetrahedron Lett. 1987, 28, 2123. <https://doi.org/10.1016/S0040-4039(00)96059-3>
40. Takano S., Sato T., Inomata K., Ogasawara K.: J. Chem. Soc., Chem. Commun. 1991, 462. <https://doi.org/10.1039/c39910000462>
41. Morales C. L., Pagenkopf B. L.: Org. Lett. 2008, 10, 157. <https://doi.org/10.1021/ol702376j>
42. Yu M., Pagenkopf B. L.: Tetrahedron 2005, 61, 321. <https://doi.org/10.1016/j.tet.2004.10.077>
43. Carson C. A., Kerr M. A.: Chem. Soc. Rev. 2009, 38, 3051. <https://doi.org/10.1039/b901245c>
44. Bajtos B., Yu M., Zhao H., Pagenkopf B. L.: J. Am. Chem. Soc. 2007, 129, 9631. <https://doi.org/10.1021/ja067821+>
45a. De Simone F., Gertsch J., Waser J.: Angew. Chem., Int. Ed. 2010, 49, 5767. <https://doi.org/10.1002/anie.201001853>
45b. De Simone F., Waser J.: Synlett 2011, 589.
46. Mizutani M., Inagaki F., Nakanishi T., Yanagihara C., Tamai I., Mukai C.: Org. Lett. 2011, 13, 1796. <https://doi.org/10.1021/ol200320z>
47. Mukai C., Takahashi Y: Org. Lett. 2005, 7, 5793. <https://doi.org/10.1021/ol052179u>
48. Amat M., Lozano O., Escolano C., Molins E., Bosch J.: J. Org. Chem. 2007, 72, 4431. <https://doi.org/10.1021/jo070397q>
49. Lewin G., Schaeffer C., Lambert P. H.: J. Org. Chem. 1995, 60, 3282. <https://doi.org/10.1021/jo00116a009>
50. Lewin G., Schaeffer C.: Nat. Prod. Lett. 1995, 7, 227. <https://doi.org/10.1080/10575639508043215>
51. Low Y.-Y., Lim K.-H., Choo Y.-M., Pang H.-S., Etoh D., Hayashi M., Komiyama K., Kam T.-S.: Tetrahedron Lett. 2010, 51, 269. <https://doi.org/10.1016/j.tetlet.2009.10.122>
52. Büchi G., Manning R. E.: J. Am. Chem. Soc. 1966, 88, 2532. <https://doi.org/10.1021/ja00963a031>
53. Langlois N., Guéritte F., Langlois Y., Potier P.: Tetrahedron Lett. 1976, 1487. <https://doi.org/10.1016/S0040-4039(00)71290-1>
54. Sapeta K., Kerr M. A.: Org. Lett. 2009, 11, 2081. <https://doi.org/10.1021/ol900457z>
55. Nielsen H. B., Hazell A., Hazell R., Ghia F., Torssell B. G.: Phytochemistry 1994, 37, 1729. <https://doi.org/10.1016/S0031-9422(00)89601-6>
56. Kam T.-S., Pang H.-S., Choo Y. M., Komiyama K.: Chem. Biodiv. 2004, 1, 646. <https://doi.org/10.1002/cbdv.200490056>
57. Kam T.-S., Sim K.-M., Lim T.-M.: Tetrahedron Lett. 2000, 41, 2733. <https://doi.org/10.1016/S0040-4039(00)00250-1>
58. Mahboobi v. S., Burgemeister T., Kastner F.: Arch. Pharm. (Weinheim) 1995, 328, 29. <https://doi.org/10.1002/ardp.19953280107>
59. Magolan J., Kerr M. A.: Org. Lett. 2006, 8, 4561. <https://doi.org/10.1021/ol061698+>
60. Reyes-Gutiérrez P. E., Torres-Ochoa R. O., Martínez R., Miranda L. D.: Org. Biomol. Chem. 2009, 7, 1388. <https://doi.org/10.1039/b821260k>
61. Du D., Li L., Wang Z.: J. Org. Chem. 2009, 74, 4379. <https://doi.org/10.1021/jo900650h>
62. Marion N., Díez-González S., Nolan S. P.: Angew. Chem., Int. Ed. 2007, 46, 2988. <https://doi.org/10.1002/anie.200603380>
63. Dickman D. A., Heathcock C. H.: J. Am. Chem. Soc. 1989, 111, 1528. <https://doi.org/10.1021/ja00186a074>
64. Heathcock C. H., Norman M. H., Dickman D. A.: J. Org. Chem. 1990, 55, 798. <https://doi.org/10.1021/jo00290a006>
65. Brown S. H., Djerassi C., Simpson P. G.: J. Am. Chem. Soc. 1968, 90, 2445. <https://doi.org/10.1021/ja01011a057>
66. Laguna A., Novotný L., Dolejš L., Buděšínský M.: Planta Med. 1984, 285. <https://doi.org/10.1055/s-2007-969710>
67. Costa P. R. R., Castro R. N., Farais F. M. C., Antunes O. A. C., Bergter L.: Tetrahedron: Asymmetry 1993, 4, 1499. <https://doi.org/10.1016/S0957-4166(00)80350-X>
68. d’Angelo J., Desmaële D., Dumas F., Guignant A.: Tetrahedron: Asymmetry 1992, 3, 459. <https://doi.org/10.1016/S0957-4166(00)80251-7>
69. Padwa A.: Tetrahedron 2011, 67, 8057. <https://doi.org/10.1016/j.tet.2011.07.009>
70. Padwa A.: J. Org. Chem. 2009, 74, 6421. <https://doi.org/10.1021/jo901300x>
71. Padwa A.: Chem. Soc. Rev. 2009, 38, 3072. <https://doi.org/10.1039/b816701j>
72. Padwa A. in: Progress in Heterocyclic Chemistry (G. W. Gribble and J. A. Joule, Eds), Vol. 20, Chap. 2, p. 20. Elsevier Science, New York 2009.
73. Bur S. K., Padwa A. in: Advances in Heterocyclic Chemistry (A. R. Katritzky, Ed.), Vol. 94, Chap. 1, p. 1. Elsevier, New York 2007.
74. Padwa A., Burr S. K.: Tetrahedron 2007, 63, 5341. <https://doi.org/10.1016/j.tet.2007.03.158>
75. Padwa A.: Helv. Chim. Acta 2005, 88, 1357. <https://doi.org/10.1002/hlca.200590109>
76. Padwa A.: Pure Appl. Chem. 2004, 76, 1933. <https://doi.org/10.1351/pac200476111933>
77. Padwa A.: Pure Appl. Chem. 2003, 75, 47. <https://doi.org/10.1351/pac200375010047>
78. Padwa A.: Chem. Commun. 1998, 1417. <https://doi.org/10.1039/a801467a>
79. Padwa A., Weingarten M. D: Chem. Rev. 1996, 96, 223. <https://doi.org/10.1021/cr950022h>
80. Padwa A., Hertzog D. L., Nadler W. R.: J. Org. Chem. 1994, 59, 7072. <https://doi.org/10.1021/jo00102a037>
81. Padwa A., Harring S. R., Semones M. A.: J. Org. Chem. 1998, 63, 44. <https://doi.org/10.1021/jo970847m>
82. Padwa A., Harring S. R., Semones M. A.: J. Org. Chem. 1995, 60, 2952. <https://doi.org/10.1021/jo00115a001>
83. Tanino H., Fukuishi K., Ushiyama M., Okada K.: Tetrahedron Lett. 2002, 43, 2385. <https://doi.org/10.1016/S0040-4039(02)00256-3>
84. Tanino H., Fukuishi K., Ushiyama M., Okada K.: Tetrahedron 2004, 60, 3273. <https://doi.org/10.1016/j.tet.2004.02.015>
85. Harley-Mason J., Kaplan M.: J. Chem. Soc., Chem. Commun. 1967, 915.
86. Node M., Nagasawa H., Fuji K.: J. Org. Chem. 1990, 55, 517. <https://doi.org/10.1021/jo00289a025>
87. Schultz A. G., Pettus L.: J. Org. Chem. 1997, 62, 6855. <https://doi.org/10.1021/jo9707592>
88. Ho T.-L., Chen C.-K.: Helv. Chim. Acta 2006, 89, 249. <https://doi.org/10.1002/hlca.200690027>
89. Belattar A., Saxton J. E.: J. Chem. Soc., Perkin Trans. 1 1992, 1583. <https://doi.org/10.1039/p19920001583>
90. Brennan J. M., Saxton J. E.: Tetrahedron 1986, 42, 6719. <https://doi.org/10.1016/S0040-4020(01)82113-X>
91. Hájíček J., Trojánek J: Tetrahedron Lett. 1981, 22, 2927. <https://doi.org/10.1016/S0040-4039(01)81789-5>
92. Hájíček J., Trojánek J: Tetrahedron Lett. 1982, 23, 365. <https://doi.org/10.1016/S0040-4039(00)86832-X>
93. Renner U.: Helv. Chim. Acta 1965, 48, 308. <https://doi.org/10.1002/hlca.19650480208>
94. Stephens P. J., Pan J.-J., Devlin F. J., Urbanová M., Hájíček J.: J. Org. Chem. 2007, 72, 2508. <https://doi.org/10.1021/jo062567p>
95. Pilarčík T., Havlíček J., Hájíček J.: Tetrahedron Lett. 2005, 46, 7909. <https://doi.org/10.1016/j.tetlet.2005.09.098>
96. Kuehne M. E., Bornmann W. G., Earley W. G., Marko I.: J. Org. Chem. 1986, 51, 2913. <https://doi.org/10.1021/jo00365a012>
97. Hájíček J., Trojánek J: Collect. Czech. Chem. Commun. 1986, 51, 1731. <https://doi.org/10.1135/cccc19861731>
98. Pilarčík T., Hájíček J.: Unpublished results.
99. Kuehne M. E., Bohnert J. C., Bornmann W. G., Kirkemo C. L., Kuehne S. E., Seaton P. J., Zebovicz T. C.: J. Org. Chem. 1985, 50, 919. <https://doi.org/10.1021/jo00207a001>
100. Robeck D. R., Lee H. I., Flick A. C., Padwa A.: J. Org. Chem. 2009, 74, 7389.
101. Potts K. T., Rochanapruk T., Padwa A., Coats S. J., Hadjiarapoglou L.: J. Org. Chem. 1995, 60, 3795. <https://doi.org/10.1021/jo00117a035>
102. Padwa A., Coats S. J., Semones M. A.: Tetrahedron 1995, 51, 6651. <https://doi.org/10.1016/0040-4020(95)00323-Z>
103. Hubbs J. L., Heathcock C. H.: Org. Lett. 1999, 1, 1315. <https://doi.org/10.1021/ol9902632>
104. Renner U.: Lloydia 1964, 27, 406.
105. Hájíček J., Taimr J., Buděšínský M.: Tetrahedron Lett. 1998, 39, 505. <https://doi.org/10.1016/S0040-4039(97)10588-3>
106. Stephens P., Philip J., Pan J.-J., Devlin F. J., Urbanová M., Julínek O., Hájíček J.: Chirality 2008, 20, 454. <https://doi.org/10.1002/chir.20466>
107. Magomedov N. A.: Org. Lett. 2003, 5, 2509. <https://doi.org/10.1021/ol034776r>
108. Zhou J., Magomedov N. A.: J. Org. Chem. 2007, 72, 3808. <https://doi.org/10.1021/jo070144x>
109. Padwa A., Flick A. C., Lee H. I.: Org. Lett. 2005, 7, 2925. <https://doi.org/10.1021/ol0508779>
110. Padwa A., Bobeck D. R., Mmutlane E. M.: Arkivoc 2010, vi, 7.
111. Padwa A., Harring S. R., Hertzog D. L., Nadler W. R.: Synthesis 1994, 993. <https://doi.org/10.1055/s-1994-25621>
112. Zhang H., Curran D. P.: J. Am. Chem. Soc. 2011, 133, 10376. <https://doi.org/10.1021/ja2042854>
113. Feldman K. S., Antoline J. F.: Org. Lett. <https://doi.org/10.1021/ol203463n>
114. Diao T., Stahl S. S.: J. Am. Chem. Soc. 2011, 133, 14566. <https://doi.org/10.1021/ja206575j>
115. Li H., Cheng B., Boonnak N., Padwa A.: Tetrahedron 2011, 67, 9829. <https://doi.org/10.1016/j.tet.2011.09.118>