Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2011, 76, 1669-1686
https://doi.org/10.1135/cccc2011098
Published online 2012-01-09 11:51:17

Gibberellins – terpenoid plant hormones: Biological importance and chemical analysis

Terezie Urbanováa, Danuše Tarkowskáa,*, Miroslav Strnada,b and Peter Heddenc

a Laboratory of Growth Regulators, Faculty of Sciences, Palacký University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, v.v.i., Šlechtitelů 11, 783 71 Olomouc, Czech Republic
b Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
c Rothamsted Research, Harpenden, Herts AL5 2JQ, UK

Crossref Cited-by Linking

  • Shaffique Shifa, Shah Anis Ali, Odongkara Peter, Elansary Hosam O., Khan Abdul Latif, Adhikari Arjun, Kang Sang-Mo, Lee In-Jung: Deciphering the ABA and GA biosynthesis approach of Bacillus pumilus, mechanistic approach, explaining the role of metabolic region as an aid in improving the stress tolerance. Sci Rep 2024, 14. <https://doi.org/10.1038/s41598-024-78227-3>
  • Feitosa-Junior Oseias R., Lubbe Andrea, Kosina Suzanne M., Martins-Junior Joaquim, Barbosa Deibs, Baccari Clelia, Zaini Paulo A., Bowen Benjamin P., Northen Trent R., Lindow Steven E., da Silva Aline M.: The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024, 14, 82. <https://doi.org/10.3390/metabo14020082>
  • Angelo Del Mondo, Annamaria Vinaccia, Christophe Brunet, Clementina Sansone: Bioprospecting of phytohormone biosynthetic pathways in the microalgal realm. Algal Research 2023, 76, 103307. <https://doi.org/10.1016/j.algal.2023.103307>
  • Zhang Yini, Diao Shu, Ding Xianyin, Sun Jiaming, Luan Qifu, Jiang Jingmin: Transcriptional regulation modulates terpenoid biosynthesis of Pinus elliottii under drought stress. Industrial Crops and Products 2023, 202, 116975. <https://doi.org/10.1016/j.indcrop.2023.116975>
  • Loades Eddison, Pérez Marta, Turečková Veronika, Tarkowská Danuše, Strnad Miroslav, Seville Anne, Nakabayashi Kazumi, Leubner-Metzger Gerhard: Distinct hormonal and morphological control of dormancy and germination in Chenopodium album dimorphic seeds. Front. Plant Sci. 2023, 14. <https://doi.org/10.3389/fpls.2023.1156794>
  • Khdar Zein Alabdeen, Le Tam Minh, Schelz Zsuzsanna, Zupkó István, Szakonyi Zsolt: Stereoselective Synthesis and Application of Gibberellic Acid-Derived Aminodiols. IJMS 2022, 23, 10366. <https://doi.org/10.3390/ijms231810366>
  • Stirk Wendy A., van Staden Johannes: Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnology Advances 2020, 44, 107612. <https://doi.org/10.1016/j.biotechadv.2020.107612>
  • Zhang B., Lei Z., Liu Z.‐Q., Zheng Y.‐G.: Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant. J Appl Microbiol 2020, 129, 1620. <https://doi.org/10.1111/jam.14746>
  • El-Sayed Mohamed Y., Fetooh Hammad, Refat Moamen S., Eldaroti Hala H., Adam Abdel Majid A., Saad Hosam A.: Complexes of the plant hormone gibberellic acid with the Pt(II), Au(III), Ru(III), V(III), and Se(IV) ions: preparation, characterization, and in vitro evaluation of biological activity. Journal of Molecular Liquids 2019, 296, 111895. <https://doi.org/10.1016/j.molliq.2019.111895>
  • Li Peng, Ding Lan, Zhang Li, He Jing, Huan Zhaowei: Weisiensin B inhibits primary and lateral root development by interfering with polar auxin transport in Arabidopsis thaliana. Plant Physiology and Biochemistry 2019, 139, 738. <https://doi.org/10.1016/j.plaphy.2019.04.020>
  • Stirk W.A., Tarkowská D., Gruz J., Strnad M., Ördög V., van Staden J.: Effect of gibberellins on growth and biochemical constituents in Chlorella minutissima (Trebouxiophyceae). South African Journal of Botany 2019, 126, 92. <https://doi.org/10.1016/j.sajb.2019.05.001>
  • Tarkowská Danuše, Strnad Miroslav: Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance. Planta 2018, 247, 1051. <https://doi.org/10.1007/s00425-018-2878-x>
  • Udayan Aswathy, Kathiresan S., Arumugam Muthu: Kinetin and Gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Research 2018, 32, 182. <https://doi.org/10.1016/j.algal.2018.03.007>
  • Rivera Juan David, Correa Navarro Yaned Milena, Ocampo Diana Marcela: ESTANDARIZACIÓN DE UN MÉTODO CROMATOGRÁFICO PARA LA IDENTIFICACIÓN DEL ÁCIDO GIBERÉLICO EN SEMILLAS DE MAÍZ (Zea mays L.). Cienc. En Desarro. 2017, 8, 51. <https://doi.org/10.19053/01217488.v8.n2.2017.7129>
  • Waqas Muhammad, Khan Abdul Latif, Lee In-Jung: Bioactive chemical constituents produced by endophytes and effects on rice plant growth. Journal of Plant Interactions 2014, 9, 478. <https://doi.org/10.1080/17429145.2013.860562>
  • Li Shuhuai, Tao Huilin, Li Jianping: Molecularly Imprinted Electrochemical Luminescence Sensor Based on Enzymatic Amplification for Ultratrace Isoproturon Determination. Electroanalysis 2012, 24, 1664. <https://doi.org/10.1002/elan.201200088>