Collect. Czech. Chem. Commun. 2011, 76, 1529-1548
https://doi.org/10.1135/cccc2011156
Published online 2011-12-20 08:30:04

A theoretical study of the nitration of eugenol with the nitronium ion

Ricardo Ugartea, Guillermo Salgadob,* and Luis Basáezc

a Instituto de Química, Facultad de Ciencias, Universidad Austral de Valdivia, Valdivia, Chile
b Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Chile
c Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile

References

1. Garza E., Toranzo J. M.: ADM 1988, 55, 46.
2. Ghosh R., Nadiminty N., Fitzpatrick J. E., Alworth W. L., Slaga T. J., Kumar A. P.: J. Biol. Chem. 2005, 280, 5812. <https://doi.org/10.1074/jbc.M411429200>
3. Mihara S., Shibamoto T.: J. Agric. Food Chem. 1982, 30, 1215. <https://doi.org/10.1021/jf00114a053>
4. Park I.-K., Lee H.-S., Lee S.-G., Park J.-D., Ahn Y.-J.: J. Agric. Food Chem. 2000, 48, 2528. <https://doi.org/10.1021/jf9904160>
5. Ogata M., Hoshi M., Urano S., Endo T.: Chem. Pharm. Bull. 2000, 48, 1467. <https://doi.org/10.1248/cpb.48.1467>
6. Yoo C. B., Han K. T., Cho K. S., Ha J., Park H. J., Nam J. H., Kil U. H., Lee K. T.: Cancer Lett. 2005, 225, 41. <https://doi.org/10.1016/j.canlet.2004.11.018>
7. Hidalgo M., De la Rosa C., Carrasco H., Cardona W., Gallardo C., Espinoza C.: Química Nova 2009, 32, 1467. <https://doi.org/10.1590/S0100-40422009000600020>
8. Levin D. E., Lowy A.: J. Am. Chem. Soc. 1933, 55, 1995. <https://doi.org/10.1021/ja01332a033>
9. Hughes E. D., Ingold C. K., Reed R. I.: J. Chem. Soc. 1950, 2400. <https://doi.org/10.1039/jr9500002400>
10. Politzer P., Jayasuriya K., Sjoberg P., Laurence P. R.: J. Am. Chem. Soc. 1985, 107, 1174. <https://doi.org/10.1021/ja00291a015>
11. Sokolov A. V.: Int. J. Quantum Chem. 2004, 100, 1. <https://doi.org/10.1002/qua.20098>
12. Olah G. A.: Acc. Chem. Res. 1971, 4, 240. <https://doi.org/10.1021/ar50043a002>
13. Esteves P. M., de M. Carneiro J. W., Cardoso S. P., Barbosa A. G. H., Laali K. K., Rasul G., Prakash G. K. S., Olah G. A.: J. Am. Chem. Soc. 2003, 125, 4836. <https://doi.org/10.1021/ja021307w>
14. Olbert-Majkut A., Wierzejewska M.: J. Phys. Chem. A 2008, 112, 5691. <https://doi.org/10.1021/jp801430d>
15. Politzer P., Abrahmsen L., Sjoberg P.: J. Am. Chem. Soc. 1984, 106, 855. <https://doi.org/10.1021/ja00316a005>
16. Szabo K. J., Hoernfeldt A. B., Gronowitz S.: J. Am. Chem. Soc. 1992, 114, 6827. <https://doi.org/10.1021/ja00043a031>
17. Chen L., Xiao H., Xiao J., Gong X.: J. Phys. Chem. A 2003, 107, 11440. <https://doi.org/10.1021/jp030167p>
18. Queiroz J. F. d., Carneiro J. W. d. M., Sabino A. A., Sparrapan R., Eberlin M. N., Esteves P. M.: J. Org. Chem. 2006, 71, 6192. <https://doi.org/10.1021/jo0609475>
19. Frisch M. J., Trucks G. W. S., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Gaussian Inc., Wallingford (CT) 2004.
20. Neese F.: ORCA – An ab initio, Density Functional and Semiempirical Program Package, v. 2.8-00. Universität Bonn, Bonn 2007.
21. Politzer P., Murray J. S. in: Reviews in Computational Chemistry (K. B. Lipkowitz, D. B. Boyd, Eds.), Vol. 2, pp. 273–312. Wiley-VHC, New York 1991.
22. Olbert-Majkut A., Mielke Z., Wieczorek R., Latajka Z.: Int. J. Quantum Chem. 2002, 90, 1140. <https://doi.org/10.1002/qua.10228>
23. Dapprich S., Frenking G.: J. Phys. Chem. 1995, 99, 9352. <https://doi.org/10.1021/j100023a009>
24. Hine J.: Adv. Phys. Org. Chem. 1977, 15, 1. <https://doi.org/10.1016/S0065-3160(08)60117-3>
25. Hammond G. S.: J. Am. Chem. Soc. 1955, 77, 334. <https://doi.org/10.1021/ja01607a027>
26. Fukui K.: Science 1982, 218, 747. <https://doi.org/10.1126/science.218.4574.747>
27. Yang W., Mortier W. J.: J. Am. Chem. Soc. 1986, 108, 5708. <https://doi.org/10.1021/ja00279a008>
28. Lenoir D.: Angew. Chem. Int. Ed. 2003, 42, 854. <https://doi.org/10.1002/anie.200390231>
29. Shopsowitz K., Lelj F., MacLachlan M. J.: J. Org. Chem. 2011, 76, 1285. <https://doi.org/10.1021/jo102113t>
30. Wang P.-C., Chen J., Ming L.: J. Chin. Chem. Soc. 2010, 57, 967.