Collect. Czech. Chem. Commun. 2011, 76, 1509-1527
https://doi.org/10.1135/cccc2011166
Published online 2011-12-16 14:16:13

Assessment on the effects of the operational conditions on the manufacture of PLA-based composites using an integrated compounding–injection moulding machine

Daniel Gonzáleza,b, Ana Rita Camposc, Antonio M. Cunhad, Valentín Santosa,b,* and Juan Carlos Parajóa,b

a Chemical Engineering Department, Politechnical Building, Campus Ourense, University of Vigo, 32004 Ourense, Spain
b CITI, Investigation, Transfer and Innovation Center, Avda. Galicia No. 2, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
c PIEP – Innovation in Polymer Engineering, Campus de Azurém, 4800-058 Guimarães, Portugal
d IPC – Institute for Polymers and Composites, Department of Polymer Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal

References

1. Shen L., Worrell E., Patel M.: Biofuels Bioprod. Bioref. 2010, 4, 25. <https://doi.org/10.1002/bbb.189>
2. Queiroz A. U. B., Collares-Queiroz F. P.: Polym. Rev. 2009, 49, 65. <https://doi.org/10.1080/15583720902834759>
3. Albertsson A.-C., Varma I. K.: Adv. Polym. Sci. 2002, 157, 1. <https://doi.org/10.1007/3-540-45734-8_1>
4. Okada M.: Prog. Polym. Sci. 2002, 27, 87. <https://doi.org/10.1016/S0079-6700(01)00039-9>
5. Kakuta M., Hirata M., Kimura Y.: Polym. Rev. 2009, 49, 107. <https://doi.org/10.1080/15583720902834825>
6. Chabot F., Vert M., Chapelle S., Granger P.: Polymer 1983, 24, 53. <https://doi.org/10.1016/0032-3861(83)90080-0>
7. Lee S., Lee J. W.: Korea-Australia Rheol. J. 2005, 17, 71.
8. Dorgan J. R., Lehermeier H., Mang M.: J. Polym. Environ. 2000, 8, 1. <https://doi.org/10.1023/A:1010185910301>
9. Cunha A. M., Campos A. R., Cristovao C., Vila C., Santos V., Parajó J. C.: Plast. Rubber Compos. 2006, 35, 233.
10. Mathew A. P., Oksman K., Sain M.: J. Appl. Polym. Sci. 2005, 97, 2214. <https://doi.org/10.1002/app.21779>
11. Jacob M., Thomas S.: Carbohydr. Polym. 2008, 71, 343.
12. Wibowo A. C., Mohanty A. K., Misra M., Drzal L. T.: Ind. Eng. Chem. Res. 2004, 43, 4883. <https://doi.org/10.1021/ie030873c>
13. Bax B., Müssig J.: Compos. Sci. Technol. 2008, 68, 1601. <https://doi.org/10.1016/j.compscitech.2008.01.004>
14. Ganster J., Fink H. P.: Cellulose 2006, 13, 271. <https://doi.org/10.1007/s10570-005-9045-9>
15. Vila C., Campos A. R., Cristovao C., Cunha A. M., Santos V., Parajó J. C.: Compos. Sci. Technol. 2008, 68, 944. <https://doi.org/10.1016/j.compscitech.2007.08.006>
16. Huda M. S., Mohanty A. K., Drzal L. T., Schut E., Misra M.: J. Mater. Sci. 2005, 40, 4221. <https://doi.org/10.1007/s10853-005-1998-4>
17. Ashori A.: Bioresour. Technol. 2008, 99, 4661. <https://doi.org/10.1016/j.biortech.2007.09.043>
18. Graupner N., Herrmann A. S., Müssig J.: Compos. Part A 2009, 40, 810. <https://doi.org/10.1016/j.compositesa.2009.04.003>
19. Ghosh S., Viana J. C., Reis R. L., Mano J. F.: Polym. Eng. Sci. 2007, 47, 1141. <https://doi.org/10.1002/pen.20799>
20. Sarasua J. R., Prud’homme R. E., Wisniewski M., Le Borgne A., Spassky N.: Macromolecules 1998, 31, 3895. <https://doi.org/10.1021/ma971545p>
21. Hatakeyama T., Quinn F. X.: Thermal Analysis. Fundamentals and Applications to Polymer Science. John Willey and Sons, New York 1994.
22. Fischer E. W., Sterzel H. J., Wegner G.: Kolloid-Z. u. Z Polymere 1973, 251, 980. <https://doi.org/10.1007/BF01498927>
23. Martin O., Avérous L.: Polymer 2001, 42, 6209. <https://doi.org/10.1016/S0032-3861(01)00086-6>
24. Garlotta D.: J. Polym. Environ. 2001, 9, 63. <https://doi.org/10.1023/A:1020200822435>
25. Georgopoulos S. T., Tarantili P. A., Avgerinos E., Andreopoulos A. G., Koukios E. G.: Polym. Degrad. Stab. 2005, 90, 303. <https://doi.org/10.1016/j.polymdegradstab.2005.02.020>