Collect. Czech. Chem. Commun. 2011, 76, 1471-1486
https://doi.org/10.1135/cccc2011090
Published online 2011-12-07 22:18:42

Synthesis, physico-chemical and biological properties of DNA and RNA oligonucleotides containing short alkylamino internucleotide bond

Milena Sobczaka, Katarzyna Kubiakb, Magdalena Janickaa, Malgorzata Sieranta, Barbara Mikolajczyka and Barbara Nawrota,*

a Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies of Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
b Institute of Technical Biochemistry, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz, Poland

References

1a. Guga P.: Curr. Top. Med. Chem. 2007, 7, 695. <https://doi.org/10.2174/156802607780487786>
1b. Eckstein F.: Expert. Opin. Biol. Ther. 2007, 7, 1021. <https://doi.org/10.1517/14712598.7.7.1021>
1c. Zon G.: New J. Chem. 2010, 34, 795. <https://doi.org/10.1039/b9nj00577c>
1d. Guga P.: Chem. Biodiv. 2011; <https://doi.org/10.1002/cbdv.201100130>
2a. De Mesmaeker A., Altman K. H., Wendeborn S.: Curr. Opin. Struct. Biol. 1995, 5, 343. <https://doi.org/10.1016/0959-440X(95)80096-4>
2b. Sanghvi T. S., Cook P. D. in: Carbohydrate Modifications in Antisense Research (T. S. Sanghvi and P. D. Cook, Eds), p. 1. ACS, Washington, DC 1994.
3a. Mertes M. P., Coats A. E.: J. Med. Chem. 1969, 12, 154. <https://doi.org/10.1021/jm00301a041>
3b. Tittensor R. J.: J. Chem. Soc. C 1971, 2656. <https://doi.org/10.1039/j39710002656>
4. Jones A. S., MacCoss M., Walker R. T.: Biochim. Biophys. Acta 1973, 365.
5a. Mungall S. M., Kaiser J. K.: J. Org. Chem. 1977, 42, 703. <https://doi.org/10.1021/jo00424a028>
5b. Kutterer M. K., Just G.: Bioorg. Med. Chem. Lett. 1994, 4, 435. <https://doi.org/10.1016/0960-894X(94)80011-1>
5c. Burgess K., Gibbs R. A., Metzker M. L., Raghavachari R.: J. Chem. Soc., Chem. Commun. 1994, 915. <https://doi.org/10.1039/c39940000915>
6a. Debart F., Vasseur J. J., Sanghvi Y. S., Cook P. D.: Tetrahedron Lett. 1992, 33, 2645. <https://doi.org/10.1016/S0040-4039(00)79047-2>
6b. Vasseur J. J., Debart F., Sanghvi Y. S., Cook P. D.: J. Am. Chem. Soc. 1992, 114, 4006. <https://doi.org/10.1021/ja00036a076>
6c. Morvan F., Sanghvi Y. S., Perbost M., Vasseur J. J., Bellon L.: J. Am. Chem. Soc. 1996, 118, 255. <https://doi.org/10.1021/ja9533959>
6d. De Mesmaeker A., Waldner A., Sanghvi Y. S., Lebreton J.: Bioorg. Med. Chem. Lett. 1994, 4, 395. <https://doi.org/10.1016/0960-894X(94)80003-0>
6e. Caulfield T. J., Prasad C. V. C., Prouty C. P., Saha A. K., Sardaro M. P., Schairer W. C., Yawman A., Upson D. A., Kruse L. I.: Bioor. Med. Chem. Lett. 1993, 3, 2771. <https://doi.org/10.1016/S0960-894X(01)80761-7>
7a. Kochetkova S. V., Kolganova N. A., Timofeev E. N., Florentev V. L.: Russ. J. Bioorg. Chem. 2008, 34, 453. <https://doi.org/10.1134/S1068162008040092>
7b. Rozners E., Katkevica D., Bizdena E., Strömberg R.: J. Am. Chem. Soc. 2003, 125, 12125. <https://doi.org/10.1021/ja0360900>
8. Selvam Ch., Thomas S., Abbott J., Kennedy S. D., Rozners E.: Angew. Chem. Int. Ed. 2011, 50, 2068. <https://doi.org/10.1002/anie.201007012>
9a. Paredes E., Das S. R.: ChemBioChem 2011, 12, 125. <https://doi.org/10.1002/cbic.201000466>
9b. El-Sagheer A. H., Brown T.: Chem. Soc. Rev. 2010, 39, 1388. <https://doi.org/10.1039/b901971p>
9c. Nuzzi A., Massi A., Dondoni A.: QSAR Comb. Sci. 2007, 26, 1191. <https://doi.org/10.1002/qsar.200740079>
9d. Isobe H., Fujino T., Yamazaki N., Guillot-Nieckowski M., Nakamura E.: Org. Lett. 2008, 10, 3729. <https://doi.org/10.1021/ol801230k>
9e. Fujino T., Yamazaki N., Isobe H.: Tetrahedron Lett. 2009, 50, 4101. <https://doi.org/10.1016/j.tetlet.2009.04.101>
9f. El-Sagheer A. H., Brown T.: Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15329. <https://doi.org/10.1073/pnas.1006447107>
10. Chen J., Schultz R. G., Lloyd D. H., Gryaznov S. M.: Nucleic Acids Res. 1996, 23, 2661. <https://doi.org/10.1093/nar/23.14.2661>
11. Jones G. H., Moffatt J. G.: J. Am. Chem. Soc. 1968, 90, 5337. <https://doi.org/10.1021/ja01021a086>
12. Králíková S., Buděšínský M., Masojídková M., Rosenberg I.: Tetrahedron Lett. 2000, 40, 955. <https://doi.org/10.1016/S0040-4039(99)02107-3>
13. Ogilvie K. K.: Can. J. Chem. 1973, 51, 3799. <https://doi.org/10.1139/v73-569>
14. Caruthers M.: Science 1985, 230, 281. <https://doi.org/10.1126/science.3863253>
15. Zon G., Stec W. J. in: Oligonucleotides and Analogues. A Practical Approach (F. Eckstein, Ed.), p. 87. IRL Press Oxford University Press, Oxford 1991.
16. Sipa K., Sochacka E., Kazmierczak-Baranska J., Maszewska M., Janicka M., Nowak G., Nawrot B.: RNA 2007, 8, 1301. <https://doi.org/10.1261/rna.538907>
17. Azhayev A., Antopolsky L., Tennila T., Mackie H., Randolph J.: Gen. Eng. News 2005, 25.
18. Gernon M. D., Trumpfheller Ch.: Chem. Educator 2003, 8, 112.
19. Koga M., Tamai K., Ueda M., Uchida T., Yamamuro T., Suzuki T., Saeki T.: Nucleic Acids Res. Suppl. 2001, 1, 19.
20. Gray M. D., Ratliff R. L., Vaughan M. R.: Methods Enzymol. 1992, 211, 389. <https://doi.org/10.1016/0076-6879(92)11021-A>
21. Sierant M., Paduszynska A., Kazmierczak-Baranska J., Sorbi S., Bagnoli Al., Sochacka E., Nawrot B.: Int. J. Alzheimers Dis. 2010, ID 809218.
22. Basi G., Frigon N., Barbour R., Doan T., Gordon G., McConlogue L., Sinha S., Zeller M.: J. Biol. Chem. 2003, 278, 31512. <https://doi.org/10.1074/jbc.M300169200>
23a. Zmudzka K., Johansson T., Wojcik M., Janicka M., Nowak M., Stawinski J., Nawrot B.: New J. Chem. 2003, 27, 1698. <https://doi.org/10.1039/b305689a>
23b. Nawrot B., Sobczak M., Wojcik M., Janicka M., Nowak M., Cypryk M., Stec W. J.: Oligonucleotides 2006, 16, 68. <https://doi.org/10.1089/oli.2006.16.68>
24. Qing H., Zhou W., Christensen M. A., Sun X., Tong Y., Song W.: FASEB J. 2004, 18, 1571.