Collect. Czech. Chem. Commun. 2011, 76, 1347-1360
https://doi.org/10.1135/cccc2011096
Published online 2011-11-20 19:55:15

Fluorescent oligonucleotides containing a novel perylene 2′-amino-α-L-LNA monomer: Synthesis and analytical potential

Irina V. Astakhovaa,*, T. Santhosh Kumara,b and Jesper Wengela

a Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark
b Present address: Chemical Biology Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8, Rm. 121, NIH, NIDDK, LCBB, Bethesda, MD 20892-0810, USA

References

1. Ranasinghe R. T., Brown T.: Chem. Commun. 2011, 47, 3717. <https://doi.org/10.1039/c0cc04215c>
2. Bai H., Xue X., Hou Z., Zhou Y., Meng J., Luo X.: Curr. Drug Discovery Technol. 2010, 7, 76.
3. Youk H., Raj A., van Oudenaarden A.: Methods Enzymol. 2010, 470, 429. <https://doi.org/10.1016/S0076-6879(10)70017-3>
4. Hames B. D., Higgins S. J.: Gene Probes 1. IRL, New York 1995.
5. Marras S. A. E., Tyagi S., Kramer F. R.: Clin. Chim. Acta 2006, 363, 48. <https://doi.org/10.1016/j.cccn.2005.04.037>
6. Xiao M., Kwok P. Y.: Genome Res. 2003, 13, 932. <https://doi.org/10.1101/gr.987803>
7. Whitecombe D., Brownie J., Gillard H. L., McKechnie D., Theaker J., Newton C. R., Little S.: Clin. Chem. 1998, 44, 918.
8. Nazarenko I. A., Bhatnagar S. K., Hohman R. J.: Nucleic Acids Res. 1997, 25, 2516. <https://doi.org/10.1093/nar/25.12.2516>
9. Tyagi S., Kramer F. R.: Nat. Biotechnol. 1996, 14, 303. <https://doi.org/10.1038/nbt0396-303>
10. Whitcombe D., Theaker J., Guy S. P., Brown T., Little S.: Nat. Biotechnol. 1999, 17, 804. <https://doi.org/10.1038/11751>
11. Misra A., Misra S., Misra K.: Bioconjugate Chem. 2004, 15, 638. <https://doi.org/10.1021/bc049976h>
12. Yamana K., Zako H., Asazuma K., Iwase R., Nakano H., Murakami A.: Angew. Chem., Int. Ed. 2001, 40, 1104. <https://doi.org/10.1002/1521-3773(20010316)40:6<1104::AID-ANIE11040>3.0.CO;2-2>
13. Yamana K., Iwai T., Ohtani Y., Sato S., Nakamura M., Nakano H.: Bioconjugate Chem. 2002, 13, 1266. <https://doi.org/10.1021/bc025530u>
14. Korshun V. A., Stetsenko D. A., Gait M. J.: J. Chem. Soc., Perkin. Trans 1 2002, 1092. <https://doi.org/10.1039/b111434b>
15. Mahara A., Iwase R., Sakamoto T., Yamana K., Yamaoka T., Murakami A.: Angew. Chem., Int. Ed. 2002, 41, 3648. <https://doi.org/10.1002/1521-3773(20021004)41:19<3648::AID-ANIE3648>3.0.CO;2-Y>
16. Okamoto A., Kanatani K., Saito I.: J. Am. Chem. Soc. 2004, 126, 4820. <https://doi.org/10.1021/ja039625y>
17. Hrdlicka P. J., Babu B. R., Sørensen M. D., Harrit N., Wengel J.: J. Am. Chem. Soc. 2005, 127, 13293. <https://doi.org/10.1021/ja052887a>
18. For example, Ishikawa T., Sakurai A., Hirano H., Lezhava A., Sakurai M., Hayashizaki Y.: Pharmacol. Ther. 2010, 126, 69. <https://doi.org/10.1016/j.pharmthera.2010.01.005>
19. Astakhova I. V., Korshun V. A., Wengel J.: Chem. Eur. J. 2008, 14, 11010. <https://doi.org/10.1002/chem.200801077>
20. Wilson J. N., Cho Y., Tan S., Cuppoletti A., Kool E. T.: ChemBioChem 2008, 9, 279. <https://doi.org/10.1002/cbic.200700381>
21. Kashida H., Takatsu T., Sekiguchi K., Asanuma H.: Chem. Eur. J. 2010, 16, 2479. <https://doi.org/10.1002/chem.200902078>
22. Kashida H., Sekiguchi K., Asanuma H.: Chem. Eur. J. 2010, 16, 11554. <https://doi.org/10.1002/chem.201001638>
23. Berlman I. B.: Handbook of Fluorescence Spectra of Aromatic Molecules. Academic Press, New York–London 1971.
24. Lakowicz J. R.: Principles of Fluorescence Spectroscopy. Springer, Singapore 2006.
25. Astakhova I. V., Korshun V. A., Jahn K., Kjems J., Wengel J.: Bioconjugate Chem. 2008, 19, 1995. <https://doi.org/10.1021/bc800202v>
26. Hrdlicka P. J., Babu B. R., Sørensen M. D., Wengel J.: Chem. Commun. 2004, 1478. <https://doi.org/10.1039/b404446k>
27. Kumar T. S., Wengel J., Hrdlicka P. J.: ChemBioChem 2007, 8, 1122. <https://doi.org/10.1002/cbic.200700144>
28. Kumar T. S., Wengel J., Hrdlicka P. J.: Nucleosides, Nucleotides Nucleic Acids 2007, 26, 1407. <https://doi.org/10.1080/15257770701538908>
29. Skorobogatyi M. V., Pchelintseva A. A., Petrunina A. L., Stepanova I. A., Andronova V. L., Galegov G. A., Malakhov A. D., Korshun V. A.: Tetrahedron 2006, 62, 1279. <https://doi.org/10.1016/j.tet.2005.10.057>
30. Caruthers M. H., Barone A. D., Beaucage S. L., Dodds D. R., Fisher E. F., McBride L. J., Matteucci M., Stabinsky Z., Tang J. Y.: Methods Enzymol. 1987, 154, 287. <https://doi.org/10.1016/0076-6879(87)54081-2>
31. Kumar T. S., Madsen A. S., Wengel J., Hrdlicka P. J.: J. Org. Chem. 2006, 71, 4188. <https://doi.org/10.1021/jo060331f>
32. Sørensen M. D., Petersen M., Wengel J.: Chem. Commun. 2003, 2130. <https://doi.org/10.1039/b307026c>
33. Nijegorodov N., Mabbs R., Downey W. S.: Spectrochim. Acta, Part A 2001, 57, 2673.
34. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (CBER): Guidance for Industry in the Manufacture and Clinical Evaluation of in vitro Tests to Detect Nucleic Acid Sequences of Human Immunodeficiency Viruses Types 1 and 2, p. 4. Office of Communication, Training and Manufactures Assistance (HFM-40), Rockville, MD 1999.
35. Lindegaard D.,Madsen A. S., Astakhova I. V., Malakhov A. D., Babu B. R., Korshun V. A., Wengel J.: J. Bioorg. Med. Chem. 2008, 16, 94. <https://doi.org/10.1016/j.bmc.2007.04.056>
36. Hrdlicka P. J., Kumar T. S., Wengel J.: Chem. Commun. 2005, 4279. <https://doi.org/10.1039/b506986f>
37. Wagner C., Wagenknecht H.-A.: Org. Lett. 2006, 8, 4191. <https://doi.org/10.1021/ol061246x>
38. Kolpashchnikov D. M.: Chem. Rev. 2010, 110, 4709. <https://doi.org/10.1021/cr900323b>
39. Umemoto T., Hrdlicka P. J., Babu B. R., Wengel J.: ChemBioChem 2007, 8, 2240. <https://doi.org/10.1002/cbic.200700408>
40. Barawkar D. A., Ganesh K. N.: Nucleic Acids Res. 1995, 23, 159. <https://doi.org/10.1093/nar/23.1.159>
41. Jadhav V. R., Barawkar D. A., Ganesh K. N.: J. Phys. Chem. B 1999, 103, 7383. <https://doi.org/10.1021/jp9914323>
42. Nijegorodov N. I., Downey W. S.: J. Phys. Chem. 1994, 98, 5639. <https://doi.org/10.1021/j100073a011>
43. Gaballah S. T., Hussein Y. H. A., Anderson N., Lian T. T., Netzel T. L.: J. Phys. Chem. A 2005, 109, 10832. <https://doi.org/10.1021/jp053359o>
44. Skorobogatyi M. V., Pchelintseva A. A., Ustinov A. V., Korshun V. A., Malakhov A. D.: Nucleosides, Nucleotides Nucleic Acids 2005, 24, 931. <https://doi.org/10.1081/NCN-200059283>
45. Xiao Y., Plakos K. J., Lou X., White R. J., Qian J., Plaxco K. W., Soh H. T.: Angew. Chem., Int. Ed. 2009, 48, 4354. <https://doi.org/10.1002/anie.200900369>