Collect. Czech. Chem. Commun. 2011, 76, 75-94
https://doi.org/10.1135/cccc2010133
Published online 2011-01-06 09:12:25

Titanocene and ansa-titanocene complexes bearing 2,6-bis(isopropyl)phenoxide ligand(s). Syntheses, characterization and use in catalytic dehydrocoupling polymerization of phenylsilane

Michal Horáčeka, Jan Mernab, Róbert Gyepesc, Jan Sýkorad, Jiří Kubištaa and Jiří Pinkasa,*

a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
b Institute of Chemical Technology, Prague, Department of Polymers, Technická 5, 166 28 Prague 6, Czech Republic
c Charles University, Department of Inorganic Chemistry, Hlavova 2030, 128 43 Prague 2, Czech Republic
d Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 135, 165 02 Prague 6, Czech Republic

References

1. West R.: J. Organomet. Chem. 1986, 300, 327. <https://doi.org/10.1016/0022-328X(86)84068-2>
2. Miller R. D., Michl J.: Chem. Rev. 1989, 89, 1359. <https://doi.org/10.1021/cr00096a006>
3. Samuel E., Harrod J. F.: J. Am. Chem. Soc. 1984, 106, 1859. <https://doi.org/10.1021/ja00318a063>
4. Rosenberg L., Kobus D. N.: J. Organomet. Chem. 2003, 685, 107. <https://doi.org/10.1016/S0022-328X(03)00712-5>
5. Harrod J. F.: Coord. Chem. Rev. 2000, 206-207, 493. <https://doi.org/10.1016/S0010-8545(00)00335-0>
6. Clark T. J., Lee K., Manners I.: Chem. Eur. J. 2006, 12, 8634. <https://doi.org/10.1002/chem.200600981>
7. Corey J. Y.: Advances in Organometallic Chemistry, Vol. 51, p. 1. Academic Press Inc., San Diego 2004.
8. Tilley T. D.: Acc. Chem. Res. 1993, 26, 22. <https://doi.org/10.1021/ar00025a004>
9. Corey J. Y., Zhu X. H.: J. Organomet. Chem. 1992, 439, 1. <https://doi.org/10.1016/0022-328X(92)80048-3>
10. Corey J. Y., Zhu X. H., Bedard T. C., Lange L. D.: Organometallics 1991, 10, 924. <https://doi.org/10.1021/om00050a024>
11. Obora Y., Tanaka M.: J. Organomet. Chem. 2000, 595, 1. <https://doi.org/10.1016/S0022-328X(99)00495-7>
12. Shaltout R. M., Corey J. Y., Rath N. P.: J. Organomet. Chem. 1995, 503, 205. <https://doi.org/10.1016/0022-328X(95)05561-3>
13. Shaltout R. M., Corey J. Y.: Tetrahedron 1995, 51, 4309. <https://doi.org/10.1016/0040-4020(94)01121-F>
14. Woo H. G., Kim S. Y., Han M. K., Cho E. J., Jung I. N.: Organometallics 1995, 14, 2415. <https://doi.org/10.1021/om00005a044>
15. Woo H. G., Song S. J.: Chem. Lett. 1999, 457. <https://doi.org/10.1246/cl.1999.457>
16. Mu Y., Aitken C., Cote B., Harrod J. F., Samuel E.: Can. J. Chem.-Rev. Can. Chim. 1991, 69, 264. <https://doi.org/10.1139/v91-042>
17. Aitken C. T., Harrod J. F., Samuel E.: J. Am. Chem. Soc. 1986, 108, 4059. <https://doi.org/10.1021/ja00274a034>
18. Samuel E., Mu Y., Harrod J. F., Dromzee Y., Jeannin Y.: J. Am. Chem. Soc. 1990, 112, 3435. <https://doi.org/10.1021/ja00165a029>
19. Peulecke N., Thomas D., Baumann W., Fischer C., Rosenthal U.: Tetrahedron Lett. 1997, 38, 6655. <https://doi.org/10.1016/S0040-4039(97)01575-X>
20. Lunzer F., Marschner C., Winkler B., Peulecke N., Baumann W., Rosenthal U.: Monatsh. Chem. 1999, 130, 215.
21. Corriu R. J. P., Enders M., Huille S., Moreau J. J. E.: Chem. Mater. 1994, 6, 15. <https://doi.org/10.1021/cm00037a005>
22. Bourg S., Corriu R. J. P., Enders M., Moreau J. J. E.: Organometallics 1995, 14, 564. <https://doi.org/10.1021/om00001a079>
23. Lunzer F., Marschner C., Landgraf S.: J. Organomet. Chem. 1998, 568, 253. <https://doi.org/10.1016/S0022-328X(98)00840-7>
24. Wang Q. Z., Corey J. Y.: Can. J. Chem.-Rev. Can. Chim. 2000, 78, 1434. <https://doi.org/10.1139/cjc-78-11-1434>
25. Firth A. V., Stewart J. C., Hoskin A. J., Douglas D. W.: J. Organomet. Chem. 1999, 591, 185. <https://doi.org/10.1016/S0022-328X(99)00422-2>
26. Köcher S., Walfort B., Rheinwald G., Rüffer T., Lang H.: J. Organomet. Chem. 2008, 693, 3213. <https://doi.org/10.1016/j.jorganchem.2008.07.016>
27. Shapiro P. J.: Coord. Chem. Rev. 2002, 231, 67. <https://doi.org/10.1016/S0010-8545(02)00114-5>
28. Reich H. J.: WINDNMR; NMR Spectrum Calculations. University of Wisconsin, Madison 2005.
29. Lee H., Bridgewater B. M., Parkin G.: J. Chem. Soc., Dalton Trans. 2000, 4490. <https://doi.org/10.1039/b005117i>
30. Pinkas J., Gyepes R., Císařová I., Štěpnička P., Horáček M., Kubišta J., Varga V., Mach K.: Collect. Czech. Chem. Commun. 2008, 73, 967. <https://doi.org/10.1135/cccc20080967>
31. Nifantev I. E., Butakov K. A., Aliev Z. G., Urazovskii I. F.: Metalloorg. Khim. 1991, 4, 1265.
32. Nielson A. J., Schwerdtfeger P., Waters J. M.: J. Chem. Soc., Dalton Trans. 2000, 529. <https://doi.org/10.1039/a908435e>
33. Kopf H., Pickardt J.: Z. Naturforsch., B: Chem. Sci. 1981, 36, 1208. <https://doi.org/10.1515/znb-1981-1002>
34. Bajgur C. S., Tikkanen W. R., Petersen J. L.: Inorg. Chem. 1985, 24, 2539. <https://doi.org/10.1021/ic00210a015>
35. Carpenter J. E., Weinhold F.: Theochem, J. Mol. Struct. 1988, 169, 41. <https://doi.org/10.1016/0166-1280(88)80248-3>
36. Dioumaev V. K., Rahimian K., Gauvin F., Harrod J. F.: Organometallics 1999, 18, 2249. <https://doi.org/10.1021/om980816x>
37. Dioumaev V. K., Harrod J. F.: J. Organomet. Chem. 1996, 521, 133. <https://doi.org/10.1016/0022-328X(96)06357-7>
38. Banovetz J. P., Stein K. M., Waymouth R. M.: Organometallics 1991, 10, 3430. <https://doi.org/10.1021/om00056a009>
39. Li H., Gauvin F., Harrod J. F.: Organometallics 1993, 12, 575. <https://doi.org/10.1021/om00026a048>
40. Grimmond B. J., Corey J. Y.: Organometallics 1999, 18, 2223. <https://doi.org/10.1021/om9809264>
41. Rosenberg L., Davis C. W., Yao J. Z.: J. Am. Chem. Soc. 2001, 123, 5120. <https://doi.org/10.1021/ja015697i>
42. Curtis M. D., Epstein P. S.: Adv. Organomet. Chem. 1981, 19, 213. <https://doi.org/10.1016/S0065-3055(08)60368-8>
43. Hao L. J., Woo H. G., Lebuis A. M., Samuel E., Harrod J. F.: Chem. Commun. 1998, 2013. <https://doi.org/10.1039/a806556j>
44. Langmaier J., Samec Z., Varga V., Horáček M., Mach K.: J. Organomet. Chem. 1999, 579, 348. <https://doi.org/10.1016/S0022-328X(99)00025-X>
45. Smith J. A., Brintzinger H. H.: J. Organomet. Chem. 1981, 218, 159. <https://doi.org/10.1016/S0022-328X(00)86097-0>
46. Duff A. W., Kamarudin R. A., Lappert M. F., Norton R. J.: J. Chem. Soc., Dalton Trans. 1986, 489. <https://doi.org/10.1039/dt9860000489>
47. Otwinowski Z., Minor W.: Macromolecular Crystallography, Pt A, Vol. 276, p. 307. Academic Press Inc., San Diego 1997.
48. Altomare A., Burla M., Camalli M., Cascarano G., Giacovazzo C., Guagliardi A., Moliterni A., Polidori G., Spagna R.: J. Appl. Crystallogr. 1999, 32, 115. <https://doi.org/10.1107/S0021889898007717>
49. Sheldrick G. M.: SHELXL97, Program for Crystal Structure Refinement from Diffraction Data. University of Göttingen, Göttingen 1997.
50. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03. Gaussian Inc., Wallingford (CT) 2004.