Collect. Czech. Chem. Commun.
2011, 76, 51-64
https://doi.org/10.1135/cccc2010127
Published online 2010-12-19 17:15:14
An accurate analytical representation of the bridge function of hard spheres and a question of existence of a general closure to the Ornstein–Zernike equation
Magda Francováa, Anatol Malijevskýb,*, Stanislav Labíkb and Jiří Kolafab
a Department of Chemistry, Faculty of Science, J. E. Purkynje University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
b Department of Physical Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
References
1. Hansen J.-P., McDonald I. R.: Theory of Simple Fluids. Academic Press, Amsterdam 2003.
2. Mol. Phys. 1983, 49, 1495.
< G. A., Sarkisov G. N.: https://doi.org/10.1080/00268978300102111>
3. Phys. Rev. A 1984, 30, 999.
< F. J., Young D. A.: https://doi.org/10.1103/PhysRevA.30.999>
4. Mol. Phys. 1991, 73, 495.
< S., Malijevský A., Smith W. R.: https://doi.org/10.1080/00268979100101341>
5a. Mol. Phys. 1986, 59, 275.
< P., Pastore G., Galli G., Gazzilo D.: https://doi.org/10.1080/00268978600102071>
5b. J. Chem. Phys. 1986, 84, 2336.
< G., Hansen J.-P.: https://doi.org/10.1063/1.450397>
5c. J. Chem. Phys. 1990, 92, 5533.
< Y., Stell G.: https://doi.org/10.1063/1.458486>
5d. J. Chem. Phys. 1999, 110, 3961.
< G. A., Sarkisov G. N., Vompe A. G.: https://doi.org/10.1063/1.478276>
5e. J. Chem. Phys. 2001, 114, 9496.
< G. N.: https://doi.org/10.1063/1.1365107>
6. Adv. Chem. Phys. 2008, 139, 1.
< J.-P.: https://doi.org/10.1002/9780470259498.ch1>
7. Phys. Rev. 1952, 85, 777.
< B. R. A., van Hove L.: https://doi.org/10.1103/PhysRev.85.777>
8. Mol. Phys. 2003, 101, 1139.
< S., Gabrielová H., Kolafa J., Malijevský A.: https://doi.org/10.1080/0026897031000068596>
9. Mol. Phys. 2006, 104, 1915.
< J., Labík S.: https://doi.org/10.1080/00268970600664925>
10. J. Chem. Phys. 1992, 97, 7851.
< M. P., Lipson J. E. G.: https://doi.org/10.1063/1.463459>
11. Mol. Phys. 1999, 96, 1543.
< S., Fries P. H., Krienke H.: https://doi.org/10.1080/00268979909483097>
12. J. Chem. Phys. 2005, 122, 104508.
< S. K., Kofke D. A.: https://doi.org/10.1063/1.1860559>
13. Mol. Phys. 2009, 107, 2213.
< W. W., Kwak S. K.: https://doi.org/10.1080/00268970903228733>
14. Mol. Phys. 1987, 60, 663.
< A., Labík S.: https://doi.org/10.1080/00268978700100441>
15. J. Chem. Phys. 1995, 92, 5535.
D., Sokołowski S.:
16. Phys. Rev. A 1996, 43, 5418.
< S. B., Santos A.: https://doi.org/10.1103/PhysRevA.43.5418>
17. Mol. Phys. 2002, 100, 2629.
< J., Labík S., Malijevský A.: https://doi.org/10.1080/00268970210136357>
18. http://www.vscht.cz/fch/software/hsmd.
19. Phys. Chem. Chem. Phys. 2004, 6, 2335.
< J., Labík S., Malijevský A.: https://doi.org/10.1039/b402792b>
20. Francová M.: Ph.D. Thesis. Institute of Chemical Technology, Prague, Prague 2008.
21a. J. Chem. Phys. 1992, 97, 7716.
< D.-M., Haymet A. D. J.: https://doi.org/10.1063/1.463491>
21b. J. Chem. Phys. 1995, 103, 2625.
< D.-M., Haymet A. D. J.: https://doi.org/10.1063/1.470724>
22. J. Chem. Phys. 2004, 120, 10681.
< R., Pastore G.: https://doi.org/10.1063/1.1739392>
23. J. Chem. Phys. 1993, 98, 8126.
< Y.: https://doi.org/10.1063/1.464569>
24a. Phys. Rev. A 1973, 8, 2548.
< F.: https://doi.org/10.1103/PhysRevA.8.2548>
24b. Phys. Rev. A 1979, 20, 1208.
< Y., Ashcroft N. W.: https://doi.org/10.1103/PhysRevA.20.1208>
24c. J. Chem. Phys. 1984, 80, 4441.
< S. M., Ashcroft N. W., Reatto L.: https://doi.org/10.1063/1.447225>