Collect. Czech. Chem. Commun.
2011, 76, 51-64
https://doi.org/10.1135/cccc2010127
Published online 2010-12-19 17:15:14
An accurate analytical representation of the bridge function of hard spheres and a question of existence of a general closure to the Ornstein–Zernike equation
Magda Francováa, Anatol Malijevskýb,*, Stanislav Labíkb and Jiří Kolafab
a Department of Chemistry, Faculty of Science, J. E. Purkynje University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
b Department of Physical Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
Crossref Cited-by Linking
- Pihlajamaa Ilian, Janssen Liesbeth M. C.: Comparison of integral equation theories of the liquid state. Phys. Rev. E 2024, 110. <https://doi.org/10.1103/PhysRevE.110.044608>
- Lucco Castello F., Tolias P.: Bridge functions of classical one-component plasmas. Phys. Rev. E 2022, 105. <https://doi.org/10.1103/PhysRevE.105.015208>
- Lucco Castello F., Tolias P., Dornheim T.: Classical bridge functions in classical and quantum plasma liquids. EPL 2022, 138, 44003. <https://doi.org/10.1209/0295-5075/ac7166>
- Castello Federico Lucco, Tolias Panagiotis: On the advanced integral equation theory description of dense Yukawa one‐component plasma liquids. Contributions to Plasma Physics 2021, 61. <https://doi.org/10.1002/ctpp.202000105>
- Pieprzyk S., Brańka A. C., Heyes D. M.: Representation of the direct correlation function of the hard-sphere fluid. Phys. Rev. E 2017, 95. <https://doi.org/10.1103/PhysRevE.95.062104>
- Sergiievskyi V. P., Frolov A. I.: A universal bridge functional for infinitely diluted solutions: A case study for Lennard-Jones spheres of different diameters. Russ. J. Phys. Chem. 2012, 86, 1254. <https://doi.org/10.1134/S0036024412080122>