Collect. Czech. Chem. Commun.
2010, 75, 393-404
https://doi.org/10.1135/cccc2009533
Published online 2010-04-15 09:29:02
Tool for group contribution methods – computational fragmentation
Zdeňka Kolskáa,* and Pavel Petrusb,c
a Department of Chemistry, J. E. Purkinje University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
b Department of Physics, J. E. Purkinje University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic
c Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, v.v.i., Rozvojová 2, 165 02 Prague 6, Czech Republic
References
1. Baum E. J.: Chemical Property Estimation: Theory and Practice. Lewis Publisher, Boca Raton 1998.
2. Poling B. E., Prausnitz J. M., O’Connell J. P.: The Properties of Gases and Liquids, 5th ed. McGraw–Hill, New York 2001.
3. Zábranský M., Kolská Z., Růžička V., Malijevský A.: Heat Capacities: Liquids, Solutions and Vapours, Chap. 19. The Royal Society of Chemistry, London, in press.
4. Ind. Eng. Chem. Res. 2005, 44, 8436.
< Z., Růžička V., Gani R.: https://doi.org/10.1021/ie050113x>
5. Ind. Eng. Chem. Res. 2008, 47, 2075.
< Z., Kukal J., Zábranský M., Růžička V.: https://doi.org/10.1021/ie071228z>
6. J. Appl. Polym. Sci. 2009, 111, 1745.
< A., Bartovská L., Hovorka Š., Poloncarzová M., Kolská Z., Izák P.: https://doi.org/10.1002/app.29157>
7. Fluid Phase Equilib. 2001, 183-184, 183.
< J., Gani R.: https://doi.org/10.1016/S0378-3812(01)00431-9>
8. AIChE J. 1994, 40, 1697.
< L., Gani R.: https://doi.org/10.1002/aic.690401011>
9. Program ProPred, Version 3.5. Department of Chemical Engineering, DTU Denmark. Presented: May 2002.
10. J. Chem. Inf. Comput. Sci. 1988, 28, 31.
< D.: https://doi.org/10.1021/ci00057a005>
11. J. Chem.. Inf. Comput. Sci. 1989, 29, 97.
< D., Weininger A., Weininger J.: https://doi.org/10.1021/ci00062a008>
12. J. Chem. Inf. Comput. Sci. 1990, 30, 237.
< D.: https://doi.org/10.1021/ci00067a005>
13. http://www.daylight.com.
14. Eur. J. Med. Chem. 2005, 40, 632.
< C., Liu B., Shi L., Zhou J., Lu X.-P.: https://doi.org/10.1016/j.ejmech.2005.02.006>
15. New J. Chem. 1990, 14, 805.
P., Lardy J. P.:
16. J. Chem. Inf. Comput. Sci. 1999, 39, 463.
< J. W., Rogers T. N.: https://doi.org/10.1021/ci9803334>
17. J. Chem. Inf. Comput. Sci. 1992, 32, 448.
< D. L., Su J. M., Muraki M., Hayakawa T.: https://doi.org/10.1021/ci00009a009>
18. J. Chem. Inf. Model. 2008, 48, 2294.
< R. W., Swanson J., Jilek R. J., Hurst T., Clark R. D.: https://doi.org/10.1021/ci7004687>
19. J. Chem. Eng. Data 2001, 46, 1110.
< J. R., Oscarson J. L., Rowley R. L., Wilding W. V.: https://doi.org/10.1021/je0002336>
20. J. Chem. Inf. Comput. Sci. 1993, 33, 886.
< A., Reinhard M.: https://doi.org/10.1021/ci00016a011>
21. Int. J. Mass. Spectrom. 2008, 272, 38.
< F. M., Dell E. J., Gilmore I. S., Seah M. P.: https://doi.org/10.1016/j.ijms.2007.12.016>
22. Appl. Surf. Sci. 2008, 255, 852.
< F. M., Gilmore I. S., Seah M. P.: https://doi.org/10.1016/j.apsusc.2008.05.087>
23. J. Chem. Inf. Model. 2005, 45, 386.
< D., Thormann M., Pons M.: https://doi.org/10.1021/ci0496797>
24. Int. J. Thermophys. 2007, 28, 824.
< J. R., Wilding W. V., Oscarson J. L., Rowley R. L.: https://doi.org/10.1007/s10765-007-0224-9>
25. J. Chem. Inf. Model. 2006, 46, 2432.
< A., De Radet L.: https://doi.org/10.1021/ci060159g>
26. Int. J. Pharm. 1994, 103, 163.
< W. J., Hadgraft J.: https://doi.org/10.1016/0378-5173(94)90097-3>
27. J. Chem. Phys. 1958, 29, 546.
< S. W., Buss J. H.: https://doi.org/10.1063/1.1744539>