Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2010, 75, 349-358
https://doi.org/10.1135/cccc2009109
Published online 2010-03-22 10:32:53

Primitive models of patchy colloidal particles. A review

Francesco Sciortino

Dipartimento di Fisica and INFM-CNR-SOFT, Università di Roma La Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy

Crossref Cited-by Linking

  • Russo John, Leoni Fabio, Martelli Fausto, Sciortino Francesco: The physics of empty liquids: from patchy particles to water. Rep. Prog. Phys. 2022, 85, 016601. <https://doi.org/10.1088/1361-6633/ac42d9>
  • Zhou Haolei: Analysis of the phase transition of patch colloidal particles and the molecular dynamics simulation. J. Phys.: Conf. Ser. 2022, 2248, 012007. <https://doi.org/10.1088/1742-6596/2248/1/012007>
  • Kalyuzhnyi Y.V., Patsahan T., Holovko M., Cummings P.T.: Solution of the associative MSA for the patchy colloidal model with dipole-dipole interaction. Journal of Molecular Liquids 2021, 342, 116956. <https://doi.org/10.1016/j.molliq.2021.116956>
  • Kalyuzhnyi Yurij V., Nezbeda Ivo, Cummings Peter T.: Integral equation theory for mixtures of spherical and patchy colloids. 2. Numerical results. Soft Matter 2021, 17, 3513. <https://doi.org/10.1039/D0SM02284E>
  • Bartók Albert P., Hantal György, Pártay Livia B.: Insight into Liquid Polymorphism from the Complex Phase Behavior of a Simple Model. Phys. Rev. Lett. 2021, 127. <https://doi.org/10.1103/PhysRevLett.127.015701>
  • Deviri Dan, Safran Samuel A.: Equilibrium size distribution and phase separation of multivalent, molecular assemblies in dilute solution. Soft Matter 2020, 16, 5458. <https://doi.org/10.1039/C9SM02408E>
  • Huang Tao, Han Yilong, Chen Yong: Melting and solid–solid transitions of two-dimensional crystals composed of Janus spheres. Soft Matter 2020, 16, 3015. <https://doi.org/10.1039/D0SM00023J>
  • Orellana Alberto Giacomo, Michele Cristiano De: Algorithm 1010. ACM Trans. Math. Softw. 2020, 46, 1. <https://doi.org/10.1145/3386241>
  • Nezbeda Ivo: On Molecular-Based Equations of State: Perturbation Theories, Simple Models, and SAFT Modeling. Front. Phys. 2020, 8. <https://doi.org/10.3389/fphy.2020.00287>
  • Stepanenko O. O., Jamnik A., Reščič J., Kalyuzhnyi Y. V.: Thermodynamic perturbation theory for a valence-limited model of colloidal systems. Molecular Physics 2019, 117, 3695. <https://doi.org/10.1080/00268976.2019.1662124>
  • Orellana Alberto Giacomo, Romani Emanuele, De Michele Cristiano: Speeding up Monte Carlo simulation of patchy hard cylinders. Eur. Phys. J. E 2018, 41. <https://doi.org/10.1140/epje/i2018-11657-0>
  • Handle Philip H., Loerting Thomas, Sciortino Francesco: Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man’s land. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 13336. <https://doi.org/10.1073/pnas.1700103114>
  • Reščič J, Kalyuzhnyi Y V, Cummings P T: Shielded attractive shell model again: resummed thermodynamic perturbation theory for central force potential. J. Phys.: Condens. Matter 2016, 28, 414011. <https://doi.org/10.1088/0953-8984/28/41/414011>
  • Smallenburg Frank, Filion Laura, Sciortino Francesco: Liquid–Liquid Phase Transitions in Tetrahedrally Coordinated Fluids via Wertheim Theory. J. Phys. Chem. B 2015, 119, 9076. <https://doi.org/10.1021/jp508788m>
  • Pryamitsyn Victor, Ganesan Venkat: Pair interactions in polyelectrolyte-nanoparticle systems: Influence of dielectric inhomogeneities and the partial dissociation of polymers and nanoparticles. The Journal of Chemical Physics 2015, 143. <https://doi.org/10.1063/1.4934242>
  • Ruff Kiersten M., Harmon Tyler S., Pappu Rohit V.: CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. The Journal of Chemical Physics 2015, 143. <https://doi.org/10.1063/1.4935066>
  • Rezvantalab Hossein, Shojaei-Zadeh Shahab: Designing patchy particles for optimum interfacial activity. Phys. Chem. Chem. Phys. 2014, 16, 8283. <https://doi.org/10.1039/c3cp55512g>
  • Kalyuzhnyi Y. V., Marshall B. D., Chapman W. G., Cummings P. T.: Second-order resummed thermodynamic perturbation theory for central-force associating potential: Multi-patch colloidal models. The Journal of Chemical Physics 2013, 139. <https://doi.org/10.1063/1.4816128>
  • Kalyuzhnyi Y. V., Cummings P. T.: Two-patch colloidal model with re-entrant phase behaviour. The Journal of Chemical Physics 2013, 139. <https://doi.org/10.1063/1.4819058>
  • de las Heras Daniel, Tavares José Maria, Telo da Gama Margarida M.: Bicontinuous and mixed gels in binary mixtures of patchy colloidal particles. Soft Matt 2012, 8, 1785. <https://doi.org/10.1039/c1sm06948a>
  • Kalyuzhnyi Y. V., Hlushak S. P., Cummings P. T.: An improved thermodynamic perturbation theory for square-well m-point model of the patchy colloids. The Journal of Chemical Physics 2012, 137. <https://doi.org/10.1063/1.4773012>
  • Kalyuzhnyi Y. V., Iacovella C. R., Docherty H., Holovko M., Cummings P. T.: Network Forming Fluids: Yukawa Square-Well m-Point Model. Journ Stat Phys 2011, 145, 481. <https://doi.org/10.1007/s10955-011-0264-1>
  • de las Heras Daniel, Tavares José Maria, Telo da Gama Margarida M.: Phase diagrams of binary mixtures of patchy colloids with distinct numbers of patches: the network fluid regime. Soft Matt 2011, 7, 5615. <https://doi.org/10.1039/c0sm01493a>
  • Nezbeda Ivo, Jirsák Jan: Water and aqueous solutions: simple non-speculative model approach. PCCP 2011, 13, 19689. <https://doi.org/10.1039/c1cp21903k>
  • Almarza N. G., Tavares J. M., da Gama M. M. Telo: Communication: The criticality of self-assembled rigid rods on triangular lattices. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3556665>
  • Munaó G., Costa D., Sciortino F., Caccamo C.: Simulation and theory of a model for tetrahedral colloidal particles. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3582904>
  • Kalyuzhnyi Y. V., Docherty H., Cummings P. T.: Resummed thermodynamic perturbation theory for central force associating potential. Multi-patch models. The Journal of Chemical Physics 2011, 135. <https://doi.org/10.1063/1.3604819>