Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2009, 74, 1151-1159
https://doi.org/10.1135/cccc2009067
Published online 2009-07-22 10:15:38

Organocatalysis with azahelicenes: the first use of helically chiral pyridine-based catalysts in the asymmetric acyl transfer reaction

Michal Šámala,b, Jiří Míšeka,b, Irena G. Staráa,b,* and Ivo Starýa,b,c,*

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
b Center for Biomolecules and Complex Molecular Systems, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
c Department of Organic Chemistry, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic

Crossref Cited-by Linking

  • Herzog Stefan, Rizzo Gianluca Giuseppe, Podlech Joachim: Synthesis of 5,9‐Diaza Analogues of [5]‐ and [6]Helicene and their Chiroptic and Photophysical Characterization. Eur J Org Chem 2024, 27. <https://doi.org/10.1002/ejoc.202301240>
  • Hamrouni Khaoula, Spassova Milena, Alshammari Nawaa Ali H., Hajri Amira K., Aloui Faouzi: Synthesis of new [6]helicene derivatives for OLED applications. Experimental photophysical and chiroptical properties and theoretical investigation. Journal of Molecular Structure 2024, 138408. <https://doi.org/10.1016/j.molstruc.2024.138408>
  • Marten Inka, Podlech Joachim: Synthesis of Helical Indolophenanthridines Showing Aggregation-Induced Emission. Org. Lett. 2024, 26, 1148. <https://doi.org/10.1021/acs.orglett.3c04111>
  • Gulevskaya Anna V., Tonkoglazova Daria I.: Alkyne‐Based Syntheses of Carbo‐ and Heterohelicenes. Adv Synth Catal 2022, 364, 2502. <https://doi.org/10.1002/adsc.202200513>
  • Váňa Lubomír, Jakubec Martin, Sýkora Jan, Císařová Ivana, Žádný Jaroslav, Storch Jan, Církva Vladimír: Synthesis of Aza[n]helicenes (n = 4–7) via Photocyclodehydrochlorination of 1-Chloro-N-aryl-2-naphthamides. J. Org. Chem. 2022, 87, 7150. <https://doi.org/10.1021/acs.joc.2c00375>
  • Tonkoglazova Daria I., Oryabinskaya Lyubov M., Shcherbatykh Aleksandr A., Gulevskaya Anna V.: The synthesis and crystal structure of pH-sensitive fluorescent pyrene-based double aza- and diaza[4]helicenes. Org. Biomol. Chem. 2022, 20, 2704. <https://doi.org/10.1039/D2OB00204C>
  • Herzog Stefan, Marten Inka, Weiß Aaron, Podlech Joachim: Synthesis of Diaza[5]helicenes by ortho,ortho′-Fusion of ortho-Terphenyls. Synthesis 2022, 54, 4220. <https://doi.org/10.1055/a-1804-8980>
  • Fontana Francesca, Bertolotti Benedetta: Synthesis of Functionalized Six-Membered-Ring Azahelicenes. Molecules 2022, 27, 2522. <https://doi.org/10.3390/molecules27082522>
  • Gujjarappa Raghuram, Vodnala Nagaraju, Malakar C. C.: Recent Advances in Pyridine‐Based Organocatalysis and its Application towards Valuable Chemical Transformations. ChemistrySelect 2020, 5, 8745. <https://doi.org/10.1002/slct.202002765>
  • Zanchi Chiara, Lucotti Andrea, Pistaffa Matteo, Ossi Paolo M., Trusso Sebastiano, Fontana Francesca, Carminati Greta, Rizzo Simona, Tommasini Matteo: A Raman and SERS study on the interactions of aza[5]helicene and aza[6]helicene with a nanostructured gold surface. Vibrational Spectroscopy 2020, 111, 103180. <https://doi.org/10.1016/j.vibspec.2020.103180>
  • Beránek Tomáš, Žádný Jaroslav, Strašák Tomáš, Karban Jindřich, Císařová Ivana, Sýkora Jan, Storch Jan: Synthesis of a Helical Phosphine and a Catalytic Study of Its Palladium Complex. ACS Omega 2020, 5, 882. <https://doi.org/10.1021/acsomega.9b03830>
  • Weiß Aaron, Podlech Joachim: Synthesis of 5,9‐Diaza[5]helicenes. Eur J Org Chem 2019, 2019, 6697. <https://doi.org/10.1002/ejoc.201901302>
  • Dhbaibi Kais, Favereau Ludovic, Crassous Jeanne: Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P). Chem. Rev. 2019, 119, 8846. <https://doi.org/10.1021/acs.chemrev.9b00033>
  • Wang Zhongyao, Pan Dingwu, Li Tingting, Jin Zhichao: N‐Heterocyclic Carbene (NHC)‐Organocatalyzed Kinetic Resolutions, Dynamic Kinetic Resolutions, and Desymmetrizations. Chemistry — An Asian Journal 2018, 13, 2149. <https://doi.org/10.1002/asia.201800493>
  • Hafedh Nesrine, Aloui Faouzi, Raouafi Sondes: Synthesis, enantiomeric resolution and photophysical properties of 7-cyano-14-methoxy-5-thiahexahelicene. Journal of Molecular Structure 2018, 1165, 126. <https://doi.org/10.1016/j.molstruc.2018.03.067>
  • Raouafi Sondes, Aloui Faouzi, Hafedh Nesrine: Synthesis, characterization, and photophysical properties of a new pentacyclic helicene. Comptes Rendus Chimie 2017, 20, 1047. <https://doi.org/10.1016/j.crci.2017.10.006>
  • Shahabuddin Mohammad, Miah Md Jalil, Iimura Ken-ichi, Kimura Takao, Karikomi Michinori: Synthesis, chiral resolution and optical properties of amphiphilic oxa[9]helicene derivatives. Tetrahedron Letters 2017, 58, 1334. <https://doi.org/10.1016/j.tetlet.2017.02.057>
  • Matsumoto Arimasa, Yonemitsu Kento, Ozaki Hanae, Míšek Jiří, Starý Ivo, Stará Irena G., Soai Kenso: Reversal of the sense of enantioselectivity between 1- and 2-aza[6]helicenes used as chiral inducers of asymmetric autocatalysis. Org. Biomol. Chem. 2017, 15, 1321. <https://doi.org/10.1039/C6OB02745H>
  • Hasan Mohammed, Borovkov Victor: Helicene-Based Chiral Auxiliaries and Chirogenesis. Symmetry 2017, 10, 10. <https://doi.org/10.3390/sym10010010>
  • Caronna Tullio, Mele Andrea, Famulari Antonino, Mendola Daniele, Fontana Francesca, Juza Markus, Kamuf Matthias, Zawatzky Kerstin, Trapp Oliver: A Combined Experimental and Theoretical Study on the Stereodynamics of Monoaza[5]helicenes: Solvent‐Induced Increase of the Enantiomerization Barrier in 1‐Aza‐[5]helicene. Chemistry A European J 2015, 21, 13919. <https://doi.org/10.1002/chem.201502288>
  • Hasan Mohammed, Pandey Anita D., Khose Vaibhav N., Mirgane Nitin A., Karnik Anil V.: Sterically Congested Chiral 7,8‐Dioxa[6]helicene and Its Dihydro Analogues: Synthesis, Regioselective Functionalization, and Unexpected Domino Prins Reaction. Eur J Org Chem 2015, 2015, 3702. <https://doi.org/10.1002/ejoc.201500327>
  • Vacek Chocholoušová Jana, Vacek Jaroslav, Andronova Angelina, Míšek Jiří, Songis Olivier, Šámal Michal, Stará Irena G., Meyer Michel, Bourdillon Mélanie, Pospíšil Lubomír, Starý Ivo: On the Physicochemical Properties of Pyridohelicenes. Chemistry A European J 2014, 20, 877. <https://doi.org/10.1002/chem.201204410>
  • Narcis Maurice J., Takenaka Norito: Helical‐Chiral Small Molecules in Asymmetric Catalysis. Eur J Org Chem 2014, 2014, 21. <https://doi.org/10.1002/ejoc.201301045>
  • Cauteruccio Silvia, Dova Davide, Benaglia Maurizio, Genoni Andrea, Orlandi Manuel, Licandro Emanuela: Synthesis, Characterisation, and Organocatalytic Activity of Chiral Tetrathiahelicene Diphosphine Oxides. Eur J Org Chem 2014, 2014, 2694. <https://doi.org/10.1002/ejoc.201301912>
  • Karikomi Michinori, Toda Mitsuru, Sasaki Yoshimi, Shibuya Masashi, Yamada Kenya, Kimura Takao, Minabe Masahiro, Hiratani Kazuhisa: Synthesis of helical quinone derivatives by asymmetric oxidative coupling of 2-hydroxybenzo[c]phenanthrenes using chiral diamine–copper complexes. Tetrahedron Letters 2014, 55, 7099. <https://doi.org/10.1016/j.tetlet.2014.10.147>
  • Aillard P., Voituriez A., Marinetti A.: Helicene-like chiral auxiliaries in asymmetric catalysis. Dalton Trans. 2014, 43, 15263. <https://doi.org/10.1039/C4DT01935K>
  • Roose Jesse, Achermann Stefan, Dumele Oliver, Diederich François: Electronically Connected [n]Helicenes: Synthesis and Chiroptical Properties of Enantiomerically Pure (E)‐1,2‐Di([6]helicen‐2‐yl)ethenes. Eur J Org Chem 2013, 2013, 3223. <https://doi.org/10.1002/ejoc.201300407>
  • Ben Braiek Mourad, Aloui Faouzi, Ben Hassine Béchir: Synthesis and resolution of 2-hydroxyhexahelicene. Tetrahedron Letters 2013, 54, 424. <https://doi.org/10.1016/j.tetlet.2012.11.036>
  • Weimar Marko, Correa da Costa Rosenildo, Lee Fu-Howe, Fuchter Matthew J.: A Scalable and Expedient Route to 1-Aza[6]helicene Derivatives and Its Subsequent Application to a Chiral-Relay Asymmetric Strategy. Org. Lett. 2013, 15, 1706. <https://doi.org/10.1021/ol400493x>
  • Vávra Jan, Severa Lukáš, Švec Pavel, Císařová Ivana, Koval Dušan, Sázelová Petra, Kašička Václav, Teplý Filip: Preferential Crystallization of a Helicene–Viologen Hybrid – An Efficient Method to Resolve [5]Helquat Enantiomers on a 20 g Scale. Eur J Org Chem 2012, 2012, 489. <https://doi.org/10.1002/ejoc.201101367>
  • Shen Yun, Chen Chuan-Feng: Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463. <https://doi.org/10.1021/cr200087r>
  • Álvarez Celedonio M., Barbero Héctor, García-Escudero Luis A., Martín-Alvarez Jose M., Martínez-Pérez Cristina, Miguel Daniel: η6-Hexahelicene Complexes of Iridium and Ruthenium: Running along the Helix. Inorg. Chem. 2012, 51, 8103. <https://doi.org/10.1021/ic300462z>
  • Larionov Evgeny, Mahesh Mohan, Spivey Alan C., Wei Yin, Zipse Hendrik: Theoretical Prediction of Selectivity in Kinetic Resolution of Secondary Alcohols Catalyzed by Chiral DMAP Derivatives. J. Am. Chem. Soc. 2012, 134, 9390. <https://doi.org/10.1021/ja302420g>
  • Pellissier Hélène: Catalytic Non‐Enzymatic Kinetic Resolution. Adv Synth Catal 2011, 353, 1613. <https://doi.org/10.1002/adsc.201100111>
  • Anger Emmanuel, Rudolph Mark, Norel Lucie, Zrig Samia, Shen Chengshuo, Vanthuyne Nicolas, Toupet Loïc, Williams J. A. Gareth, Roussel Christian, Autschbach Jochen, Crassous Jeanne, Réau Régis: Multifunctional and Reactive Enantiopure Organometallic Helicenes: Tuning Chiroptical Properties by Structural Variations of Mono‐ and Bis(platinahelicene)s. Chemistry A European J 2011, 17, 14178. <https://doi.org/10.1002/chem.201101866>
  • Krausová Zuzana, Sehnal Petr, Bondzic Bojan P., Chercheja Serghei, Eilbracht Peter, Stará Irena G., Šaman David, Starý Ivo: Helicene‐Based Phosphite Ligands in Asymmetric Transition‐Metal Catalysis: Exploring Rh‐Catalyzed Hydroformylation and Ir‐Catalyzed Allylic Amination. Eur J Org Chem 2011, 2011, 3849. <https://doi.org/10.1002/ejoc.201100259>
  • Chen Jinshui, Captain Burjor, Takenaka Norito: Helical Chiral 2,2′-Bipyridine N- Monoxides as Catalysts in the Enantioselective Propargylation of Aldehydes with Allenyltrichlorosilane. Org. Lett. 2011, 13, 1654. <https://doi.org/10.1021/ol200102c>
  • Crittall Matthew R., Rzepa Henry S., Carbery David R.: Design, Synthesis, and Evaluation of a Helicenoidal DMAP Lewis Base Catalyst. Org. Lett. 2011, 13, 1250. <https://doi.org/10.1021/ol2001705>
  • Adriaenssens Louis, Severa Lukáš, Koval Dušan, Císařová Ivana, Belmonte Marta Martínez, Escudero-Adán Eduardo C., Novotná Pavlína, Sázelová Petra, Vávra Jan, Pohl Radek, Šaman David, Urbanová Marie, Kašička Václav, Teplý Filip: [6]Saddlequat: a [6]helquat captured on its racemization pathway. Chem. Sci. 2011, 2, 2314. <https://doi.org/10.1039/C1SC00468A>
  • Graule Sebastien, Rudolph Mark, Shen Wenting, Williams J. A. Gareth, Lescop Christophe, Autschbach Jochen, Crassous Jeanne, Réau Régis: Assembly of π‐Conjugated Phosphole Azahelicene Derivatives into Chiral Coordination Complexes: An Experimental and Theoretical Study. Chemistry A European J 2010, 16, 5976. <https://doi.org/10.1002/chem.200903234>
  • Samal Michal, Misek Jiri, Stara Irena G., Stary Ivo: ChemInform Abstract: Organocatalysis with Azahelicenes: The First Use of Helically Chiral Pyridine‐Based Catalysts in the Asymmetric Acyl Transfer Reaction. ChemInform 2010, 41. <https://doi.org/10.1002/chin.201006071>
  • Storch Jan, Čermák Jan, Karban Jindřich, Císařová Ivana, Sýkora Jan: Synthesis of 2-Aza[6]helicene and Attempts To Synthesize 2,14-Diaza[6]helicene Utilizing Metal-Catalyzed Cycloisomerization. J. Org. Chem. 2010, 75, 3137. <https://doi.org/10.1021/jo100252a>
  • Severa Lukáš, Koval Dušan, Novotná Pavlína, Ončák Milan, Sázelová Petra, Šaman David, Slavíček Petr, Urbanová Marie, Kašička Václav, Teplý Filip: Resolution of a configurationally stable [5]helquat: enantiocomposition analysis of a helicene congener by capillary electrophoresis. New J. Chem. 2010, 34, 1063. <https://doi.org/10.1039/c0nj00085j>