Collect. Czech. Chem. Commun. 2009, 74, 1101-1116
https://doi.org/10.1135/cccc2009028
Published online 2009-07-16 11:26:41

Surface analysis by imaging mass spectrometry

Veronika Vidováa,b, Michael Volnýa, Karel Lemra,b and Vladimír Havlíčeka,b,*

a Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
b Department of Analytical Chemistry, Faculty of Science, Palacký University, Tř. Svobody 8, 771 46 Olomouc, Czech Republic

References

1. Vickerman J. C.: Surface Analysis – the Principal Techniques. John Wiley & Sons, Chichester 1997.
2. McDonnell L. A., Heeren R. M. A.: Mass Spectrom. Rev. 2007, 26, 606. <https://doi.org/10.1002/mas.20124>
3. Hardesty W. M., Caprioli R. M.: Anal. Bioanal. Chem. 2008, 391, 899. <https://doi.org/10.1007/s00216-008-1972-5>
4. Zimmerman T. A., Monroe E. B., Tucker K. R., Rubakhin S. S., Sweedler J. V.: Methods Cell Biol. 2008, 89, 361. <https://doi.org/10.1016/S0091-679X(08)00613-4>
5. Pumphrey G. M., Hanson B. T., Chandra S., Madsen E. L.: Environ. Microbiol. 2009, 11, 220. <https://doi.org/10.1111/j.1462-2920.2008.01757.x>
6. Ekman R., Sillberring J., Brinkmalm A. M., Desiderio D. M., Nibbering N. M.: Mass Spectrometry: Instrumentation, Interpretation and Applications. John Wiley & Sons, New York 2009.
7. Gross J.: Mass Spectrometry. Springer, Berlin 2006.
8. De Hoffman E., Stroobant V.: Mass Spectrometry: Principles and Applications, 3rd ed. John Wiley & Sons, Chichester 2007.
9. Grove W. R.: Philos. Mag. 1853, 5, 203. <https://doi.org/10.1080/14786445308647227>
10. Thomson J. J.: Philos. Mag. 1910, 20, 752. <https://doi.org/10.1080/14786441008636962>
11. Herzog R. F. K., Viehboeck F.: Phys. Rev. 1949, 76, 855. <https://doi.org/10.1103/PhysRev.76.855>
12. Heeren R. M. A., McDonnell L. A., Amstalden E., Luxembourg S. L., Altelaar A. F. M., Piersma S. R.: Appl. Surf. Sci. 2006, 252, 6827. <https://doi.org/10.1016/j.apsusc.2006.02.134>
13. Beckey H. D.: Z. Naturforsch. A 1959, 14, 712. <https://doi.org/10.1515/zna-1959-0805>
14. Barber M., Bordoli R. S., Sedgwick R. D., Tyler A. N.: Nature 1981, 293, 270. <https://doi.org/10.1038/293270a0>
15. Busch K. L.: J. Mass Spectrom. 1995, 30, 233. <https://doi.org/10.1002/jms.1190300202>
16. Murayama Y., Komatsu M., Kuge K., Hashimoto H.: Appl. Surf. Sci. 2006, 252, 6774. <https://doi.org/10.1016/j.apsusc.2006.02.217>
17. Hiraoka K., Asakawa D., Fujimaki S., Takamizawa A., Mori K.: Eur. Phys. J., D 2005, 38, 225. <https://doi.org/10.1140/epjd/e2005-00282-6>
18. Van Berkel G. J., Pasilis S. P., Ovchinnikova O.: J. Mass Spectrom. 2008, 43, 1161. <https://doi.org/10.1002/jms.1440>
19. Dzidic I., Carrol D. I., Stillwell R. N., Horning E. C.: Anal. Chem. 1975, 47, 1308. <https://doi.org/10.1021/ac60358a077>
20. Takáts Z., Wiseman J. M., Gologan B., Cooks R. G.: Science 2004, 306, 471. <https://doi.org/10.1126/science.1104404>
21. Cody R. B., Laramee J. A., Durst H. D.: Anal. Chem. 2005, 77, 2297. <https://doi.org/10.1021/ac050162j>
22. Venter A., Nefliu M., Cooks R. G.: Trends Anal. Chem. 2008, 27, 284. <https://doi.org/10.1016/j.trac.2008.01.010>
23. Dickinson M., Heard P. J., Barker J. H. A., Lewis A. C., Mallard D., Allen G. C.: Appl. Surf. Sci. 2006, 252, 6793. <https://doi.org/10.1016/j.apsusc.2006.02.236>
24. Spoto G.: Termochim. Acta 2000, 365, 157. <https://doi.org/10.1016/S0040-6031(00)00722-X>
25. Layne G. D., Sims K. W.: Int. J. Mass Spectrom. 2000, 203, 187. <https://doi.org/10.1016/S1387-3806(00)00312-2>
26. Piantadosi C., Jasieniak M., Skinner W. M., Smart R. St. C.: Miner. Eng. 2000, 13, 1377. <https://doi.org/10.1016/S0892-6875(00)00120-5>
27. Guerquin-Kern J., Wu T., Quintana C., Croisy A.: Biochim. Biophys. Acta 2005, 1724, 228. <https://doi.org/10.1016/j.bbagen.2005.05.013>
28. Pachuta S. J., Cooks R. G.: Chem. Rev. 1987, 87, 647. <https://doi.org/10.1021/cr00079a009>
29. Van Vaeck L., Adriaens A., Gijbels R.: Mass Spectrom. Rev. 1999, 18, 1. <https://doi.org/10.1002/(SICI)1098-2787(1999)18:1<1::AID-MAS1>3.0.CO;2-W>
30. Harton S. E., Stevie F. A., Ade H.: J. Am. Soc. Mass Spectrom. 2006, 17, 1142. <https://doi.org/10.1016/j.jasms.2006.03.018>
31. Hoshi T., Kudo M.: Appl. Surf. Sci. 2003, 203–204, 818. <https://doi.org/10.1016/S0169-4332(02)00834-6>
32. Smart R. St. C., Jasieniak M., Prince K. E., Skinner W. M.: Miner. Eng. 2000, 13, 857. <https://doi.org/10.1016/S0892-6875(00)00074-1>
33. Möller J., Beumer A., Lipinsky D., Arlinghaus H. F.: Appl. Surf. Sci. 2006, 252, 6709. <https://doi.org/10.1016/j.apsusc.2006.02.241>
34. Ullrich M., Burenkov A., Ryssel H.: Nucl. Instrum. Methods Phys. Res., Sect. B 2005, 228, 373. <https://doi.org/10.1016/j.nimb.2004.10.073>
35. Gillen G., Christiansen J. W., Tsong I. S. T., Kumball B., Williams P.: Rapid Commun. Mass Spectrom. 1988, 2, 67. <https://doi.org/10.1002/rcm.1290020404>
36. Gillen G., Fahey A., Wagner M., Mahoney Ch.: Appl. Surf. Sci. 2006, 252, 6537. <https://doi.org/10.1016/j.apsusc.2006.02.235>
37. Russo M. F., Wojciechowski I. A., Garrison B. J.: Appl. Surf. Sci. 2006, 252, 6423. <https://doi.org/10.1016/j.apsusc.2006.02.243>
38. Delcorte A., Polenius C., Bertrand P.: Appl. Surf. Sci. 2006, 252, 6494. <https://doi.org/10.1016/j.apsusc.2006.02.259>
39. Winograd N.: Anal. Chem. 2005, 77, 142A. <https://doi.org/10.1021/ac053355f>
40. Wucher A.: Appl. Surf. Sci. 2006, 252, 6482. <https://doi.org/10.1016/j.apsusc.2006.02.070>
41. Delcorte A., Polenius C., Bertrand P.: Appl. Surf. Sci. 2006, 252, 6542. <https://doi.org/10.1016/j.apsusc.2006.02.260>
42. Garrison B. J.: Appl. Surf. Sci. 2006, 252, 6409. <https://doi.org/10.1016/j.apsusc.2006.02.085>
43. Delcorte A.: Appl. Surf. Sci. 2006, 252, 6582. <https://doi.org/10.1016/j.apsusc.2006.02.076>
44. Weibel D. E., Lockyer N., Vickerman J. C.: Appl. Surf. Sci. 2004, 231–232, 146. <https://doi.org/10.1016/j.apsusc.2004.03.098>
45. Jones E. A., Lockyer N. P., Kordys J., Vickerman J. C.: J. Am. Soc. Mass Spectrom. 2007, 18, 1559. <https://doi.org/10.1016/j.jasms.2007.05.014>
46. Wittmaack K., Szymczak W., Hoheisel G., Tuszynski W.: J. Am. Soc. Mass Spectrom. 2000, 11, 553. <https://doi.org/10.1016/S1044-0305(00)00110-0>
47. Chi P. H., Simons D. S.: Proceedings of 7th International Conference on Secondary Ion Mass Spectrometry, SIMS VII, 1990 (A. Benninghoven, C. A. Evans, K. D. McKeegan, H. A. Storms, and H. W. Werner, Eds), p. 127, Wiley, Chichester, 1990.
48. Cook K. D., Chan K. W. S.: Int. J. Mass Spectrom. Ion Processes 1983, 54, 135. <https://doi.org/10.1016/0168-1176(83)85013-7>
49. Nygren H., Börner K., Malmberg P., Tallarek E., Hagenhoff B.: Microsc. Res. Tech. 2005, 68, 329. <https://doi.org/10.1002/jemt.20258>
50. Nygren H., Malmberg P., Kriegeskotte Ch., Arlinghaus H. F.: FEBS Lett. 2004, 566, 291. <https://doi.org/10.1016/j.febslet.2004.04.052>
51. Chandra S.: J. Microsc. 2001, 204, 150. <https://doi.org/10.1046/j.1365-2818.2001.00944.x>
52. Chandra S., Kabalka G. W., Lorey D. R. II, Smith D. R., Coderre J. A.: Clin. Cancer Res. 2002, 8, 2675.
53. Smith D. R., Lorey D. R. II, Chandra S.: Appl. Surf. Sci. 2004, 231–232, 457. <https://doi.org/10.1016/j.apsusc.2004.03.172>
54. Chandra S.: Appl. Surf. Sci. 2004, 231–232, 462. <https://doi.org/10.1016/j.apsusc.2004.03.175>
55. Nygren H., Hagenhoff B., Malmberg P., Nillson M., Richter K.: Microsc. Res. Tech. 2007, 70, 969. <https://doi.org/10.1002/jemt.20502>
56. www.nobelprizes.com/nobel/chemistry/2002b.html (5.1.2009).
57. Tanaka K., Waki H., Ido Y., Akita S., Yoshida Y., Yoshida T.: Rapid Commun. Mass Spectrom. 1988, 2, 151. <https://doi.org/10.1002/rcm.1290020802>
58. Karas M., Hillenkamp F.: Anal. Chem. 1988, 60, 2299. <https://doi.org/10.1021/ac00171a028>
59. Li Y. L., Gross M. L., Hsu F.: J. Am. Soc. Mass Spectrom. 2005, 16, 679. <https://doi.org/10.1016/j.jasms.2005.01.017>
60. Krüger R., Karas M.: J. Am. Soc. Mass Spectrom. 2002, 13, 1218. <https://doi.org/10.1016/S1044-0305(02)00450-6>
61. Karas M., Krüger R.: Chem. Rev. 2003, 103, 427. <https://doi.org/10.1021/cr010376a>
62. Dreisewerd K.: Chem. Rev. 2003, 103, 395. <https://doi.org/10.1021/cr010375i>
63. Knochenmuss R., Zenobi R.: Chem. Rev. 2003, 103, 441. <https://doi.org/10.1021/cr0103773>
64. Zhigilei L. V., Leveugle E., Garrison B. J., Yingling Y. G., Zeifman M I.: Chem. Rev. 2003, 103, 321. <https://doi.org/10.1021/cr010459r>
65. Laiko V. V., Moyer S. C., Cotter R. J.: Anal. Chem. 2002, 72, 5239. <https://doi.org/10.1021/ac000530d>
66. Schneider B. B., Lock Ch., Covey T. R.: J. Am. Soc. Mass Spectrom. 2005, 16, 176. <https://doi.org/10.1016/j.jasms.2004.10.004>
67. Konn D. O., Murrell J., Despeyroux D.: J. Am. Soc. Mass Spectrom. 2005, 16, 743. <https://doi.org/10.1016/j.jasms.2005.01.018>
68. Mayrhofer C., Krieger S., Raptakis E., Allmaier G.: J. Proteome Res. 2006, 5, 1967. <https://doi.org/10.1021/pr060165s>
69. Pittenauer E., Zehl M., Belgacem O., Raptakis E., Mistrik R., Allmaier G.: J. Mass Spectrom. 2006, 41, 421. <https://doi.org/10.1002/jms.1032>
70. Grasso G., Rizzarelli E., Spoto G.: J. Mass Spectrom. 2007, 42, 1590. <https://doi.org/10.1002/jms.1348>
71. Karas M., Gluckmann M., Schafer J.: J. Mass Spectrom. 2000, 35, 1. <https://doi.org/10.1002/(SICI)1096-9888(200001)35:1<1::AID-JMS904>3.0.CO;2-0>
72. Gut I. G.: Hum. Mutat. 2004, 23, 437. <https://doi.org/10.1002/humu.20023>
73. Ayorinde F. O., Garvine K., Saeed K.: Rapid Commun. Mass Spectrom. 2002, 14, 608. <https://doi.org/10.1002/(SICI)1097-0231(20000415)14:7<608::AID-RCM918>3.0.CO;2-4>
74. Marie A., Fournier F., Tabet J. C.: Anal. Chem. 2000, 72, 5106. <https://doi.org/10.1021/ac000124u>
75. Iwase H., Tanaka A., Hiki Y., Kokubo T., Ishii-Karakasa I., Nishikido J., Kobayashi Y., Hotta K.: J. Chromatogr. B 1998, 709, 145. <https://doi.org/10.1016/S0378-4347(98)00050-4>
76. Montaudo G., Samperi F., Montaudo M. S.: Prog. Polym. Sci. 2006, 31, 277. <https://doi.org/10.1016/j.progpolymsci.2005.12.001>
77. Salzet M.: Curr. Pharm. Des. 2007, 13, 3316. <https://doi.org/10.2174/138161207782360654>
78. Chaurand P., Norris J. L., Cornett D. S., Mobley J. A., Caprioli R. M.: J. Proteome Res. 2006, 5, 2889. <https://doi.org/10.1021/pr060346u>
79. Atkinson S. J., Loadman P. M., Sutton C., Patterson L. H., Clench M. R.: Rapid Commun. Mass Spectrom. 2007, 21, 1271. <https://doi.org/10.1002/rcm.2952>
80. Hsieh Y., Casale R., Fukuda E., Chen J., Knemeyer I., Wingate J., Morrison R., Korfmacher W.: Rapid Commun. Mass Spectrom. 2006, 20, 965. <https://doi.org/10.1002/rcm.2397>
81. Khatib-Shahidi S., Andersson M., Herman J. L., Gillespie T. A., Caprioli R. M.: Anal. Chem. 2006, 78, 6448. <https://doi.org/10.1021/ac060788p>
82. Padliya N. D., Wood T. D.: Anal. Chim. Acta 2008, 627, 162. <https://doi.org/10.1016/j.aca.2008.05.059>
83. Stoeckli M., Staab D., Schweitzer A., Gardiner J., Seebach D.: J. Am. Soc. Mass Spectrom. 2007, 18, 1921. <https://doi.org/10.1016/j.jasms.2007.08.005>
84. Chaurand P., Schwartz S. A., Caprioli R. M.: Curr. Opin. Chem. Biol. 2002, 6, 676. <https://doi.org/10.1016/S1367-5931(02)00370-8>
85. Ma X., Liu G., Wang S., Chen Z., Lai M., Liu Z., Yang J.: J. Chromatogr. B 2007, 859, 170. <https://doi.org/10.1016/j.jchromb.2007.09.027>
86. Shimma S., Sugiura Y., Hayasaka T., Hoshikawa Y., Noda T., Setou M.: J. Chromatogr. B 2007, 855, 98. <https://doi.org/10.1016/j.jchromb.2007.02.037>
87. Puolitaival S. M., Burnum K. E., Cornett D. S., Caprioli R. M.: J. Am. Soc. Mass Spectrom. 2008, 19, 882. <https://doi.org/10.1016/j.jasms.2008.02.013>
88. Wang H.-Y. J., Post S. N. J. J., Woods A. S.: Int. J. Mass Spectrom. 2008, 278, 143. <https://doi.org/10.1016/j.ijms.2008.04.005>
89. Leinweber B. D., Tsaprailis G., Monks T. J., Lau S. S.: J. Am. Soc. Mass Spectrom. 2008, 20, 89. <https://doi.org/10.1016/j.jasms.2008.09.008>
90. Sinha T. K., Khatib-Shahidi S., Yankeelov T. E., Mapara K., Ehtesham M., Cornett D. S., Dawant B. M., Caprioli R. M., Gore J. C.: Nature Methods 2008, 5, 57. <https://doi.org/10.1038/nmeth1147>
91. Andersson M., Groseclose M. R., Deutch A. Y., Caprioli R. M.: Nature Methods 2008, 5, 101. <https://doi.org/10.1038/nmeth1145>
92. Venter A., Sojka P. E., Cooks R. G.: Anal. Chem. 2006, 78, 8549. <https://doi.org/10.1021/ac0615807>
93. Takáts Z.: J. Mass Spectrom. 2005, 40, 1261. <https://doi.org/10.1002/jms.922>
94. Costa A. B., Cooks R. G.: Chem. Commun. 2007, 38, 3915. <https://doi.org/10.1039/b710511h>
95. Costa A. B., Cooks R. G.: Chem. Phys. Res. 2008, 464, 1.
96. Volny M., Venter A., Smith S. A., Pazzi M., Cooks R. G.: Analyst 2008, 133, 525. <https://doi.org/10.1039/b717693g>
97. Bereman M. S., Nyadong L., Fernandez F. M., Muddiman D. C.: Rapid Commun. Mass Spectrom. 2006, 20, 3409. <https://doi.org/10.1002/rcm.2759>
98. Takáts Z., Kobliha V., Ševčík K., Novák P., Kruppa G., Lemr K., Havlíček V.: J. Mass Spectrom. 2008, 43, 196. <https://doi.org/10.1002/jms.1285>
99. Takáts Z., Wiseman J. M., Cooks R. G.: J. Mass Spectrom. 2005, 40, 1261. <https://doi.org/10.1002/jms.922>
100. Nefliu M., Cooks R. G., Moore C.: J. Am. Soc. Mass Spectrom. 2006, 17, 1091. <https://doi.org/10.1016/j.jasms.2006.04.021>
101. Talaty N., Takáts Z., Cooks R. G.: Analyst 2005, 130, 1624. <https://doi.org/10.1039/b511161g>
102. Nefliu M., Smith J. N., Venter A., Cooks R. G.: J. Am. Soc. Mass. Spectrom. 2008, 19, 420. <https://doi.org/10.1016/j.jasms.2007.11.019>
103. Benassi M., Wu C., Nefliu M., Ifa D., Volný M., Cooks R. G.: Int. J. Mass Spectrom. 2009, 280, 235. <https://doi.org/10.1016/j.ijms.2008.10.012>
104. Nyadong L., Green M. D., Jesus V. R., Newton P. N., Fernández F. M.: Anal. Chem. 2007, 79, 2150. <https://doi.org/10.1021/ac062205h>
105. Cotte-Rodríguez I., Takáts Z., Talaty N., Chen H., Cooks R. G.: Anal. Chem. 2005, 77, 6755. <https://doi.org/10.1021/ac050995+>
106. D’Agostino P. A., Hancock J. R., Chenier C. L., Jackson Lepage C. R.: J. Chromatogr. A 2006, 1110, 86. <https://doi.org/10.1016/j.chroma.2006.01.083>
107. Zhang S., Shin Y.-S., Mayer R., Basile F.: J. Anal. Appl. Pyrolysis 2007, 80, 353. <https://doi.org/10.1016/j.jaap.2007.04.005>
108. Huang G., Chen H., Zhang X., Cooks R. G., Ouyang Z.: Anal. Chem. 2007, 79, 8327. <https://doi.org/10.1021/ac0711079>
109. Ranc V., Havlíček V., Bednář P., Lemr K.: Chem. Listy 2007, 101, 524.
110. Jackson A. U., Werner S. R., Talaty N., Song Y., Campbell K., Cooks R. G., Morgan J. A.: Anal. Biochem. 2008, 375, 272. <https://doi.org/10.1016/j.ab.2008.01.011>
111. Wiseman J. M., Ifa D. R., Song Q., Cooks R. G.: Angew. Chem. Int. Ed. 2006, 45, 7188. <https://doi.org/10.1002/anie.200602449>
112. Ifa D. R., Wiseman J. M., Song Q., Cooks R. G.: Int. J. Mass Spectrom. 2007, 259, 8. <https://doi.org/10.1016/j.ijms.2006.08.003>
113. Van Berkel G. J., Kertesz V.: Anal. Chem. 2006, 78, 4938. <https://doi.org/10.1021/ac060690a>
114. Ifa D. R., Gumaelius L. M., Eberlin L. S., Manike N. E., Cooks R. G.: Analyst 2007, 132, 461. <https://doi.org/10.1039/b700236j>
115. Kertesz V., Van Berkel G. J.: Anal. Chem. 2008, 80, 1208.
116. Kertesz V., Van Berkel G. J.: Rapid Commun. Mass Spectrom. 2008, 22, 2639. <https://doi.org/10.1002/rcm.3662>
117. Van Berkel G. J., Kertesz V., Schneider B. B., Covey T. R.: Presented at 55th ASMS Conference on Mass Spectrometry, Indianapolis, June 3–7, 2007.
118. Lobinski R., Moulin C., Ortega R.: Biochimie 2006, 88, 1591. <https://doi.org/10.1016/j.biochi.2006.10.003>
119. Becker J. S., Zoriy M., Becker J. S., Dobrowolska J., Matusch A.: J. Anal. At. Spectrom. 2007, 22, 736. <https://doi.org/10.1039/b701558e>
120. Becker J. S., Dobrowolska J., Zoriy M., Matusch A.: Rapid Commun. Mass Spectrom. 2008, 22, 2768. <https://doi.org/10.1002/rcm.3673>
121. Stokes P., Green F., Gilmore I., Hopley Ch., O’Connor G.: Presented at 56th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, June 1–5, 2008.