Collect. Czech. Chem. Commun. 2009, 74, 1069-1080
https://doi.org/10.1135/cccc2009012
Published online 2009-07-10 20:35:38

Addition of lithiated methoxyallene to aziridines – a novel access to enantiopure piperidine and β-amino acid derivatives

Vladimir Prisyazhnyuk, Matthias Jachan, Irene Brüdgam, Reinhold Zimmer and Hans-Ulrich Reissig*

Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany

References

1a. Zimmer R.: Synthesis 1993, 165. <https://doi.org/10.1055/s-1993-25823>
1b. Zimmer R., Khan F. A.: J. Prakt. Chem. 1996, 338, 92. <https://doi.org/10.1002/prac.19963380116>
1c. Zimmer R., Dinesh C. U., Nandanan E., Khan F. A.: Chem. Rev. 2000, 100, 3067. <https://doi.org/10.1021/cr9902796>
1d. Tius M. A.: Acc. Chem. Res. 2003, 36, 281. <https://doi.org/10.1021/ar0200394>
1e. Zimmer R., Reissig H.-U. in: Modern Allene Chemistry (N. Krause and A. S. K. Hashmi, Eds), p. 425. Wiley-VCH, Weinheim 2004.
1f. Tius M. A.: Eur. J. Org. Chem. 2005, 2193. <https://doi.org/10.1002/ejoc.200500005>
1g. Reissig H.-U., Zimmer R. in: Science of Synthesis (N. Krause, Ed.), Vol. 44, p. 301. Thieme, Stuttgart 2007.
1h. Brasholz M., Reissig H.-U., Zimmer R.: Acc. Chem. Res. 2009, 42, 45. <https://doi.org/10.1021/ar800011h>
2a. Hoff S., Brandsma L., Arens J. F.: Rec. Trav. Chim. Pays-Bas 1969, 88, 609. <https://doi.org/10.1002/recl.19690880513>
2b. Gange D., Magnus P.: J. Am. Chem. Soc. 1978, 100, 7746. <https://doi.org/10.1021/ja00492a061>
2c. Gange D., Magnus P., Bass L., Arnold E. V., Clardy J.: J. Am. Chem. Soc. 1980, 102, 2134. <https://doi.org/10.1021/ja00526a084>
2d. Magnus P., Albaugh-Robertson P.: J. Chem. Soc., Chem. Commun. 1984, 804. <https://doi.org/10.1039/c39840000804>
2e. Hormuth S., Reissig H.-U.: Synlett 1991, 179. <https://doi.org/10.1055/s-1991-20670>
2f. Hormuth S., Reissig H.-U.: J. Org. Chem. 1994, 59, 67. <https://doi.org/10.1021/jo00080a013>
2g. Hormuth S., Schade W., Reissig H.-U.: Liebigs Ann. Chem. 1996, 2001. <https://doi.org/10.1002/jlac.199619961209>
2h. Wong Y.-S., Trân-Huu-Dâu M.-E., Wartchow R., Winterfeldt E.: Chem. Eur. J. 2001, 7, 2349.
2i. Flögel O., Reissig H.-U.: Eur. J. Org. Chem. 2004, 2797. <https://doi.org/10.1002/ejoc.200400173>
2j. Brasholz M., Reissig H.-U.: Synlett 2007, 1294.
3a. Nedolya N. A., Brandsma L., Tarasova O. A., Verkruijsse H. D., Trofimov B. A.: Tetrahedron Lett. 1998, 39, 2409. <https://doi.org/10.1016/S0040-4039(98)00211-1>
3b. Okala Amombo M. G., Hausherr A., Reissig H.-U.: Synlett 1999, 1871. <https://doi.org/10.1055/s-1999-2966>
3c. Breuil-Desvergnes V., Goré J.: Tetrahedron 2001, 57, 1939. <https://doi.org/10.1016/S0040-4020(01)00030-8>
3d. Breuil-Desvergnes V., Goré J.: Tetrahedron 2001, 57, 1951. <https://doi.org/10.1016/S0040-4020(01)00031-X>
3e. Flögel O., Reissig H.-U.: Synlett 2004, 895.
4a. Flögel O., Okala Amombo M. G., Reissig H.-U., Zahn G., Brüdgam I., Hartl H.: Chem. Eur. J. 2003, 9, 1405. <https://doi.org/10.1002/chem.200390160>
4b. Kaden S., Reissig H.-U.: Org. Lett. 2006, 8, 4763. <https://doi.org/10.1021/ol061538y>
4c. Brasholz M., Reissig H.-U.: Angew. Chem. 2007, 119, 1659; Angew. Chem. Int. Ed. 2007, 46, 1634. <https://doi.org/10.1002/anie.200604078>
4d. Brasholz M., Reissig H.-U.: Eur. J. Org. Chem. 2009, 3595. <https://doi.org/10.1002/ejoc.200900450>
5a. Schade W., Reissig H.-U.: Synlett 1999, 632. <https://doi.org/10.1055/s-1999-2662>
5b. Pulz R., Cicchi S., Brandi A., Reissig H.-U.: Eur. J. Org. Chem. 2003, 1153. <https://doi.org/10.1002/ejoc.200390169>
5c. Helms M., Schade W., Pulz R., Watanabe T., Al-Harrasi A., Fišera L., Hlobilová I., Zahn G., Reissig H.-U.: Eur. J. Org. Chem. 2005, 1003. <https://doi.org/10.1002/ejoc.200400627>
6a. Pulz R., Al-Harrasi A., Reissig H.-U.: Org. Lett. 2002, 4, 2353. <https://doi.org/10.1021/ol0260573>
6b. Pulz R., Schade W., Reissig H.-U.: Synlett 2003, 405.
6c. Al-Harrasi A., Reissig H.-U.: Angew. Chem. 2005, 117, 6383; Angew. Chem. Int. Ed. 2005, 44, 6227. <https://doi.org/10.1002/anie.200501127>
6d. Bressel B., Egart B., Al-Harrasi A., Pulz R., Reissig H.-U., Brüdgam I.: Eur. J. Org. Chem. 2008, 467. <https://doi.org/10.1002/ejoc.200700792>
6e. Pfrengle F., Al-Harrasi A., Brüdgam I., Reissig H.-U.: Eur. J. Org. Chem. 2009, 282. <https://doi.org/10.1002/ejoc.200800870>
6f. Pfrengle F., Lentz D., Reissig H.-U.: Angew. Chem. 2009, 121, 3211; Angew. Chem. Int. Ed. 2009, 48, 3165. <https://doi.org/10.1002/anie.200805724>
7a. Deyrup J. A. in: The Chemistry of Heterocyclic Compounds (A. Hassner, Ed.), Vol. 42, Part 1, p. 1. Wiley, New York 1983.
7b. Yudin A. K. (Ed.): Aziridines and Epoxides in Organic Synthesis. Wiley-VCH, Weinheim 2006.
7c. Singh G. S., D’hooghe M., de Kimpe N.: Chem. Rev. 2007, 107, 2080. <https://doi.org/10.1021/cr0680033>
7d. For ring-opening reactions of aziridine derivatives, see: Tanner D.: Angew. Chem. 1994, 105, 625; Angew. Chem., Int. Ed. Engl. 1994, 33, 599. <https://doi.org/10.1002/anie.199405991>
7e. McCoull W., Davis F. A.: Synthesis 2000, 1347. <https://doi.org/10.1055/s-2000-7097>
8a. Khim S.-K., Cederstrom E., Ferri D. C., Mariano P. S.: Tetrahedron 1996, 52, 3195. <https://doi.org/10.1016/0040-4020(95)01105-6>
8b. Hsiao Y., Hegedus L. S.: J. Org. Chem. 1997, 62, 3586. <https://doi.org/10.1021/jo962343e>
8c. Farmer J. J., Schroer F. C., Meinwald J.: Helv. Chim. Acta 2000, 83, 2594. <https://doi.org/10.1002/1522-2675(20000906)83:9<2594::AID-HLCA2594>3.0.CO;2-H>
9. The high specific optical rotation [α]D +106.1 (c 0.57, CHCl3) indicates that 4 is essentially enantiopure. It is very likely that the corresponding lithiated aziridine derivative does not undergo inversion of configuration (see: Capriati V., Florio S., Luisi R., Mazzanti A., Musio B.: J. Org. Chem. 2008, 73, 3197) before the presumably very fast intramolecular addition to the activated benzene ring. <https://doi.org/10.1021/jo800069k>
10a. For formation of 4 in racemic form, see: Breternitz H. J., Schaumann E., Adiwidjaja G.: Tetrahedron Lett. 1991, 32, 1299. <https://doi.org/10.1016/S0040-4039(00)79650-X>
10b. For a similar compound, see: Aggarwal V. K., Alonso E., Ferrara M., Spey S. E.: J. Org. Chem. 2002, 67, 2335. <https://doi.org/10.1021/jo016312h>
11a. Arcadi A.: Chem. Rev. 2008, 108, 3266. <https://doi.org/10.1021/cr068435d>
11b. Jiménez-Núňez E., Echavarren A. M.: Chem. Rev. 2008, 108, 3326. <https://doi.org/10.1021/cr0684319>
11c. Patil N. T., Yamamoto Y.: Chem. Rev. 2008, 108, 3395. <https://doi.org/10.1021/cr050041j>
12. DMSO as solvent seems to be crucial for this cyclization (see also refs2a–2g for the formation of dihydrofuran derivatives); other solvents did not allow this transformation, see: Prisyazhnyuk V.: Ph.D. Thesis. Freie Universität Berlin, Berlin 2007.
13. Crystal data of anti-6b: C14H19NO3S, Mr = 281.4; T = 173(2) K; crystal size: 0.5 × 0.2 × 0.1 mm; monoclinic, space group P2(1), a = 10.204(3) Å, b = 7.750(2) Å, c = 10.287(3) Å; Z = 2; Dc = 1.261 Mg m–3; F(000) = 300; μ(MoKα) = 0.222 mm–1; θ range for data collection: 2.17 to 30.58°; index ranges: –14 ≤ h ≤ 10, –11 ≤ k ≤ 11, –14 ≤ l ≤ 9; reflections collected/unique: 6556/4187 (Rint = 0.0158); final R indices (I > 2σ(I)): R1 = 0.0352, wR2 = 0.0840. For structure solution and refinement, the programs SHELXS97 and SHELXL97 were used25. CCDC 720141 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/ conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).
14. This rearrangement may be caused by excess lithiated methoxyallene present or its presumed thermal decomposition product lithium methoxide. The process requires deprotonation at the terminal allene carbon and reprotonation in position 3 to generate the alkyne moiety. The overall driving force could be the subsequent deprotonation of the fairly acidic alkyne proton to afford the dianions of compounds 6. The fairly low yields indicate that considerable decomposition is occurring under these reaction conditions. For the formation of similar compounds by an alternative approach, see: Alouane N., Vrancken E., Mangeney P.: Synthesis 2007, 1261.
15. For a related cyclization with toluenesulfonic acid, see: Goldstein S. W., Overman L. E., Rabinowitz M. H.: J. Org. Chem. 1992, 57, 1179. <https://doi.org/10.1021/jo00030a026>
16a. Marshall J. A., Wang X.-J.: J. Org. Chem. 1990, 55, 2995. <https://doi.org/10.1021/jo00297a004>
16b. Hyland C. J. T., Hegedus L. S.: J. Org. Chem. 2006, 71, 8658. <https://doi.org/10.1021/jo061340r>
16c. Li J., Fu C., Chen G., Chai G., Ma S.: Adv. Synth. Catal. 2008, 350, 1376. <https://doi.org/10.1002/adsc.200800088>
17a. Ballestri M., Chatgilialogulo C., Clark K. B., Griller D., Giese B., Kopping B.: J. Org. Chem. 1991, 56, 678. <https://doi.org/10.1021/jo00002a035>
17b. Pulz R., Schade W., Reissig H.-U.: Synlett 2003, 233.
17c. Kavrakova I. K.: J. Chem. Res., Synop. 2005, 682. <https://doi.org/10.3184/030823405774663174>
18a. Satyanarayana G., Maier M. E.: Tetrahedron 2008, 64, 356. <https://doi.org/10.1016/j.tet.2007.10.088>
18b. Yang X., Zhai H., Li Z.: Org. Lett. 2008, 10, 2457, and references therein. <https://doi.org/10.1021/ol800737d>
19a. Grewe R., Mondon A.: Ber. Dtsch. Chem. Ges. 1948, 81, 279. <https://doi.org/10.1002/cber.19480810402>
19b. Craig D., McCague R., Potter G. A., Williams M. R. V.: Synlett 1998, 58. <https://doi.org/10.1055/s-1998-1567>
20. Juaristi E.: Enantioselective Synthesis of β-Amino Acids. Wiley, Hoboken (NJ) 2005.
21a. Hormuth S., Reissig H.-U., Dorsch D.: Liebigs Ann. Chem. 1994, 121. <https://doi.org/10.1002/jlac.199419940204>
21b. Langler R. F., Raheja R. K., Schank K., Beck H.: Helv. Chim. Acta 2001, 84, 1943. <https://doi.org/10.1002/1522-2675(20010711)84:7<1943::AID-HLCA1943>3.0.CO;2-T>
21c. Zimmer R., Taszarek M., Schefzig L., Reissig H.-U.: Synlett 2008, 2046. Also see ref.3b.
22. For a review concerning Umpolung of reactivity, see: Seebach D.: Angew. Chem. 1979, 91, 259; Angew. Chem., Int. Ed. Engl. 1979, 18, 239. <https://doi.org/10.1002/anie.197902393>
23a. Laschat S., Dickner T.: Synthesis 2000, 1781. <https://doi.org/10.1055/s-2000-8218>
23b. Weintraub P. M., Sabol J. S., Kane J. M., Borcherding D. R.: Tetrahedron 2003, 59, 2953. <https://doi.org/10.1016/S0040-4020(03)00295-3>
23c. Buffat M. G. P.: Tetrahedron 2004, 60, 3551. <https://doi.org/10.1016/j.tet.2003.11.043>
23d. Harrity J. P. A., Provoost O.: Org. Biomol. Chem. 2005, 3, 1349. <https://doi.org/10.1039/b502349c>
23e. For selected original reports, see: Ouchi H., Mihara Y., Takahata H.: J. Org. Chem. 2005, 70, 5207. <https://doi.org/10.1021/jo050519j>
23f. Adriaenssens L. V., Hartley R. C.: J. Org. Chem. 2007, 72, 10287. <https://doi.org/10.1021/jo7019948>
23g. Mancey N. C., Butlin R. J., Harrity J. P. A.: Synlett 2008, 2647.
23h. Provoost O. Y., Hazelwood A. J., Harrity J. P. A.: Beilstein J. Org. Chem. 2007, 3, No. 8.
24. Davis F. A., Song M., Augustine A.: J. Org. Chem. 2006, 71, 2779. <https://doi.org/10.1021/jo052566h>
25. Sheldrick G. M.: SHELX97 (includes SHELXS97, SHELXL97, CIFTAB). Programs for Crystal Structure Analysis (Release 97-2). Universität Göttingen, Göttingen 1998.