SYNTHESIS OF (PURIN-6-YL)ACETATES AND THEIR TRANSFORMATIONS TO 6-(2-HYDROXYETHYL)AND 6-(CARBAMOYLMETHYL)PURINES

Zbyněk Hasník, Radek Pohl, Blanka Klepetářová and Michal Hocek ${ }^{1 \text {,* }}$
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Gilead Sciences \& IOCB Research Center, Flemingovo nám. 2, CZ-166 10 Prague 6,
Czech Republic; e-mail: ${ }^{1}$ hocek@uochb.cas.cz

Received March 20, 2009
Accepted April 30, 2009
Published online July 7, 2009

Dedicated to Dr. Alfred Bader for his generous support of chemical research and education.

Abstract

A novel approach to the synthesis of (purin-6-yl)acetates was developed based on Pdcatalyzed cross-coupling reactions of 6 -chloropurines with a Reformatsky reagent. Their reduction with NaBH_{4} and treatment with MnO_{2} gave 6-(2-hydroxyethyl)purines, while reactions with amines in presence of NaCN afforded 6 -(carbamoylmethyl)purines. Mesylation of the 6-(2-hydroxyethyl)purines followed by nucleophilic substitutions gave rise to several 6-(2-substituted ethyl)purines. This methodology was successfully applied to the synthesis of substituted purine bases and nucleosides for cytostatic and antiviral activity screening. None of the compounds exerted significant activity.

Keywords: Purines; Nucleosides; Organozinc reagents; Cross-coupling; Reformatsky reagent; Functionalized organometallics.

Purine bases and nucleosides bearing diverse C-substituents in position 6 are an important class of compounds possessing a broad spectrum of biological effects. 6-Arylpurine bases and nucleosides exert cytostatic ${ }^{1}$, antiviral ${ }^{2}$ and antimicrobial ${ }^{3}$ activity or receptor modulation ${ }^{4}$. 6-M ethylpurine and its ribonucleoside are highly cytotoxic ${ }^{5}$ and its liberation by purine nucleoside phosphorylases from its non-toxic deoxyribonucleoside was proposed as a novel principle in the gene therapy of cancer ${ }^{6}$. We have been interested in the synthesis of purines bearing functionalized alkyl substituents, and reported syntheses and cytostatic activities of 6-(hydroxymethyl)- ${ }^{7}$, 6 -(fluoromethyl)- ${ }^{8}$ and 6-(difluoromethyl)purine ${ }^{9}$ bases and nucleosides as well as syntheses of inactive (purin-6-yl)alanines ${ }^{10}$ and -phenylalanines ${ }^{11}$. Very recently, we have finished syntheses of a large series of 6-[(dialkyl-
amino)methyl]-, 6-(alkoxymethyl)- and 6-[(alkylsulfanyl)methyl]purine derivatives ${ }^{12}$, as well as homologous 6-[2-(dialkylamino)ethyl]-, 6-[2-(dialkylamino)vinyl]-, 6-(2-alkoxyethyl)- and 6-[2-(alkylsulfanyl)ethyl]purines ${ }^{13}$ which also exerted significant cytostatic effects and moderate non-selective anti-HCV activities. Several types of 6-(1,2-disubstituted ethyl)purines were prepared ${ }^{14}$ by oxirane ring-opening reactions of 6-oxiranylpurines with nucleophiles and several substituted 6-cyclopropylpurines by cyclopropanation ${ }^{15}$ of 6 -vinylpurines with ethyl diazoacetate but these compounds were inactive. 6-(2-Hydroxyethyl)purines are of interest as homologues of the highly cytostatic 6-(hydroxymethyl)purines. Recently we have published a preliminary communication ${ }^{16}$ on their synthesis via purine-6-acetates prepared by cross-coupling of 6-halopurines with the Reformatsky reagent. Here we give a full report on this methodology and extend the study by further transformations to 6 -(carbamoylmethyl)purines and β-substituted 6 -ethylpurines.

RESULTS AND DISCUSSION

(Purin-6-yl)acetates were prepared previously in moderate yields by heterocyclization of pyrimidines ${ }^{17}$ and by arylation of malonates ${ }^{18}$ or ethyl acetoacetate ${ }^{19}$ with 6-halo- or 6-tosyloxypurines followed by decarboxylation or cleavage of acetoacetate. The former method is laborious ${ }^{17}$, while the latter approaches ${ }^{18,19}$ were not reliably reproducible in our hands due to side reactions. Since these compounds are apparently useful intermediates for further functionalization, we have tried to develop a practical new approach to their synthesis based on Pd-catalyzed cross-coupling reactions of halopurines with a Reformatsky reagent under mild conditions. Although the first Pd-catalyzed arylation of aryl halides was reported ${ }^{20}$ in 1979, only the development of a new generation of sterically hindered phosphine ligands enabled application of this reaction to a wide range of aryl halides under mild conditions ${ }^{21}$.

In order to find the best catalytic system for the preparation of (purin6 -yl)acetates, reactions of BrZnCH 2 COOEt with model 9 -benzyl-6-chloropurine (1a) to give (purin-6-yl)acetate 2a were performed using several types of Pd catalysts and phosphine ligands with varying Pd/ligand ratios and reagent amounts (Scheme 1, Table I). The Reformatsky reagent was generated from ethyl bromoacetate and zinc dust in analogy with the procedure published ${ }^{22}$ for other organozincs using preactivation of zinc by trimethylsilyl chloride and 1,2-dibromoethane. The first reaction performed in the presence of common $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyst gave the desired (purin-6-yl)-
acetate 2a in a low yield of 15\% (entry 1). Therefore we have tried different catalytic systems based on $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ in combination with various phosphine ligands. The use of $\mathrm{P}(\mathrm{o}-\mathrm{Tol})_{3}$ or $\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$ ligands did not give any reaction (entries 2, 3), whereas the use of JohnPhos ${ }^{23}$ ((2-biphenyl)di-tert-butylphosphine) with only 1 mole $\%$ of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ loading resulted in a bit more promising $\mathbf{1 6 \%}$ yield of $\mathbf{2 a}$ (entry 4) and this catalytic system was further optimized. The reaction conversion strongly depended on the catalyst loading, $\mathrm{Pd} / \mathrm{ligand}$ ratio and on the amount of the Reformatsky reagent (entries 5-9). Changing the $\mathrm{Pd}_{2} \mathrm{dba}_{3} /$ ligand ratio from initial 1:2 to $1: 4$ increased the yield to 31% (entry 5) and increase in Pd loading (2 mole \%) gave 48\% yield (entry 6). Since further increase in the ratio or catalyst loading did not bring any improvement (entries 7,8), the excess of the organozinc reagent was varied. When using 4 equiv. of $\mathrm{BrZnCH}_{2} \mathrm{COOEt}^{2}$ in presence of 2 mole \%

 $R=H, M e, P h$

Scheme 1

TABLE I
Optimization of the cross-coupling of $\mathbf{1 a}$ with the Reformatsky reagent

Entry	R	Pd catalyst mole \%	Ligand mole \%	Equivalents of ester	Product	$\begin{gathered} \text { Yield } \\ \% \end{gathered}$
1	H	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5)$		3	2a	15
	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}(1)$	$\mathrm{P}(0-\mathrm{Tol})_{3}(4)$	2	2a	0
3	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}(1)$	$\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}(2)$	2	2a	0
4	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (1)	JohnPhos (2)	2	2a	16
5	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (1)	JohnPhos (4)	2	2a	31
6	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (2)	JohnPhos (8)	2	2a	48
7	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (2)	JohnPhos (12)	2	2a	43
8	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (3)	JohnPhos (12)	2	2a	47
9	H	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (2)	JohnPhos (8)	4	2a	91
10	Me	$\mathrm{Pd}_{2} \mathrm{dba}_{3}(2)$	JohnPhos (8)	4	3a	0
11	Ph	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ (2)	JohnPhos (8)	4	4a	0

of $\mathrm{Pd}_{2} \mathrm{dba}_{3}$ and 8 mole \% of JohnPhos ligand, the reaction proceeded very smoothly to afford the desired ester $\mathbf{2 a}$ in an excellent yield of 91% (entry 9). We have also tried to apply this optimized procedure to the reactions of branched Reformatsky reagents in order to prepare α-substituted (purin-6-yl)acetates 3a and 4a. However, these reagents were entirely unreactive under these conditions and only the starting compound was recovered after separation (entries 10, 11).

In compounds 1-14:

Scheme 2

Table II
Cross-couplings of diverse halopurines with the Reformatsky reagent

Entry	Halopurine	Product	Yield, \%
1	$\mathbf{1 a}$	$\mathbf{2 a}$	91
2	$\mathbf{1 b}$	$\mathbf{2 b}$	76
3	$\mathbf{1 c}$	$\mathbf{2 c}$	75
4	$\mathbf{1 d}$	$\mathbf{2 d}$	97
5	$\mathbf{l e}$	$\mathbf{2 e}$	67
6	$\mathbf{l f}$	$\mathbf{2 f}$	96

The optimized conditions were then applied to the synthesis of other derivatives using a set of protected purine bases and nucleosides with various substituents in position 9 of the purine ring (Scheme 2, Table II). THPprotected 6 -chloropurine base $\mathbf{1 b}$ and both toluoyl and silyl protected riboand 2^{\prime}-deoxyribonucleosides $\mathbf{1 c}$ - $\mathbf{1 f}$ reacted with [(ethoxycarbonyl)methyl]zinc bromide generally very well giving conversions to corresponding (purin-6-yl)acetates 3b-3f. The isolated yields of the THP-protected base 2b and Tol-protected nucleosides $\mathbf{2 c}$ and $\mathbf{2 e}$ were somewhat lower (67-76\%) compared to almost quantitative yields of the silylated nucleosides 2d and $\mathbf{2 f}$ probably due to the limited stability of the THP- and Tol-protecting groups during the aqueous work-up. Therefore, the TBS groups were further used for protection of nucleosides in the follow-up chemistry.

Having developed an efficient and practical methodology for the synthesis of (purin-6-yl)acetates, we next explored the possibility of further functional group transformations. The first reaction under study was the hydrolysis of the ester in order to prepare (purin-6-yl)acetic acid (as a novel interesting hetarylacetic acid). A model alkaline hydrolysis of 2a was performed under mild conditions with aqueous NaOH in ethanol (Scheme 3). The starting compound quickly disappeared from the reaction mixture but, after neutralization with dilute HCl , the only product obtained was 6-methylpurine 5 a as a product of decarboxylation of the unstable free acetic acid formed in situ. When we tried a milder neutralization with Amberlite 67 followed by chromatography, the same decarboxylation occurred. Apparently, the desired (purin-6-yl)acetic acid is too unstable to be isolated.

Scheme 3

The most desirable transformation of esters $\mathbf{2}$ is the reduction to the corresponding 6-(2-hydroxyethyl)purines 6 (homologues of biologically active 6 -(hydroxymethyl)purines ${ }^{7}$). The reductions were studied and optimized with model ester 2a (Scheme 4, Table III). Due to possible side reactions in protic media, we have tested several metal hydrides and boranes in various aprotic solvents. When using strong metal hydrides such as $\mathrm{LiAlH}_{4}, \mathrm{LiBEt}_{3} \mathrm{H}$ or L-Selectride, the reaction did not proceed even after 2 days of heating and the starting compound was recovered (entry 1). The use of small excess
of NaBH_{4} in DMF or the use of borane $\mathrm{Me}_{2} \mathrm{~S}$ in THF resulted only in decomposition of the starting material (entries 2, 3). Using excess of NaBH_{4} in refluxing THF already gave traces of the desired 6-(2-hydroxyethyl)purine 6a (entry 4), while the use of 1 equiv. of DIBAH in toluene gave a more promising 15% yield of $\mathbf{6 a}$ (entry 5). Further improvement was achieved by using excess of DIBAH in toluene (26% yield, entry 6) or AlH $_{3}$ (prepared in situ from LiAlH_{4} and AlCl_{3}) in THF (39\% yield, entry 7). Due to incompatibility of TBS-protected nucleosides 2d, 2f, wtih DIBAH ${ }^{24}$, we focused on the use of excess NaBH_{4} in other solvents. The use of ten-fold excess of NaBH_{4} in dioxane gave 40% yield (entry 8), while the use of protic EtOH further improved the yield of the desired purine 6a to 54\% (entry 11).

Scheme 4

Table III
Optimization of reduction of (purin-6-yl)acetate 2a

Entry	Hydride (equiv.)	Solvent	Temperature, ${ }^{\circ} \mathrm{C}$	Time, h	Yield of $\mathbf{6 a}, \%$
1	Other hydrides $^{\text {a }}$	THF	$0-60$	$6-48$	0
2	$\mathrm{NaBH}_{4}(4)$	DMF	40	6	dec.
3	$\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(6)$	THF	reflux	6	dec.
4	$\mathrm{NaBH}_{4}(3)$	THF	reflux	6	5
5	$\mathrm{DIBAH} \mathrm{(1)}_{6}$	toluene	0	1	15
7	$\mathrm{DIBAH}_{4} / \mathrm{AlCl}_{3}(3: 1)$	THF	0	3	26
8	$\mathrm{NaBH}_{4}(10)$	THF/toluene	0	6	39
9	$\mathrm{NaBH}_{4}(6)$	dioxane	80	overnight	40
10	$\mathrm{NaBH}_{4} / \mathrm{DIBAH}(10: 2)$	dioxane	60	1	43
11	$\mathrm{NaBH}_{4}(10)$	EtOH	50	48	52
12	$\mathrm{NaBH}_{4}(10)$	EtOH	rt	3	54

[^0]During careful chromatography of the reaction mixture, an unstable side product was identified by NMR as 9-benzyl-6-(2-hydroxyethyl)-1,6-dihydro9 H -purine (6aH), a product of over-reduction of the purine ring. This unstable compound could not have been fully characterized due to spontaneous re-oxidation and its ${ }^{1} \mathrm{H}$ NMR spectrum was measured only in a mixture with 6a. However, its identification has helped us in further optimization of the reduction protocol which apparently needed an additional mild and efficient re-oxidation step. The optimum procedure then involved the reduction of 2a with 10 equiv. of NaBH_{4} in EtOH followed by work-up, evaporation, dissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treatment of the reaction mixture with MnO_{2} under sonication (in order to re-oxidize the dihydropurine). This procedure finally gave the desired 6-(2-hydroxyethyl)purine 6a in a good overall yield of 82% (entry 12).

These optimized conditions were then used for the reduction of the whole series of (purin-6-yl)acetates 2a-2d, $\mathbf{2 f}$ (Scheme 5, Table IV). Toluoyl groups in compound $\mathbf{2 c}$ were not stable in the reduction in alkaline ethanol and only degradation of the starting material occurred (entry 3). On the other hand, reductions of THP-protected nucleobase $\mathbf{2 b}$ and TBS-protected nucleosides 2d, $\mathbf{2 f}$ gave the corresponding 2-(hydroxyethyl)purine bases and nucleosides 6b, 6d, $\mathbf{6 f}$ in good yields of ca. 70% (entries 2, 4, 5).

Scheme 5
Table IV
Preparative reductions of esters $\mathbf{2}$ to alcohols 6

Entry	Ester	Product	Yield, \%
1	$\mathbf{2 a}$	$\mathbf{6 a}$	82
2	$\mathbf{2 b}$	$\mathbf{6 b}$	65
3	$\mathbf{2 c}$	$\mathbf{6 c}$	0
4	$\mathbf{2 d}$	$\mathbf{6 d}$	74
5	$\mathbf{2 f}$	$\mathbf{6 f}$	71

Conversion of the (purin-6-yl)acetates to diverse amides was another attractive transformation which we decided to pursue. Amidations of model ester 2a with primary and secondary secondary amines were attempted under several conditions (Scheme 6, Table V). Dimethylammonium dimethylcarbamate is a convenient reagent rel easing dimethylamine upon heating ${ }^{25}$. Its reaction with $\mathbf{2 a}$ in acetonitrile under reflux (method A, entry 1) was very slow and after 7 days the yield of the desired amide 8a was only 20%. Heating of $\mathbf{2 a}$ with ethanolic $\mathrm{Me}_{2} \mathrm{NH}$ in a sealed tube (method B, entry 2) gave a somewhat better yield (50\%) of 8a but only after a prolonged reac-

Scheme 6
Table V
Amidations of (purin-6-yl)acetates

Entry	Ester	Method ${ }^{\text {a }}$	Amine	Product	Yield, \%
1	2a	A	$\mathrm{Me}_{2} \mathrm{NCOO}^{-} \mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$	8a	20
2	2a	B	$\mathrm{Me}_{2} \mathrm{NH}$	8a	50
3	2a	C	$\mathrm{Me}_{2} \mathrm{NH}$	8a	55
4	2a	C	MeNH2	7a	67
5	2a	C	piperidine	9a	60
6	2a	C	cyclopropylNH2	10a	51
7	2b	C	MeNH2	7b	95
8	2b	C	$\mathrm{Me}_{2} \mathrm{NH}$	8b	49
9	2b	C	piperidine	9b	41
10	2b	C	cyclopropylNH2	10b	66
11	2d	C	MeNH2	7d	66
12	2d	C	$\mathrm{Me}_{2} \mathrm{NH}$	8d	39
13	2d	C	piperidine	9d	49
14	2d	C	cyclopropylNH ${ }_{2}$	10d	0

${ }^{\text {a }} \mathrm{A}: \mathrm{Me}_{2} \mathrm{NCOO}^{-} \mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}$(5 equiv.), MeCN, reflux, 7 days; B: $5.6 \mathrm{~m} \mathrm{Me}_{2} \mathrm{NH}$ in EtOH (10 equiv.), $80^{\circ} \mathrm{C}, 7$ days; $\mathrm{C}: 5.6 \mathrm{M} \mathrm{Me} \mathrm{MH}^{\mathrm{NH}}$ in EtOH (10 equiv.), $10 \% \mathrm{NaCN}, 60^{\circ} \mathrm{C}, 2$ days.
tion time of 7 days. The use of a catalytic amount of $\mathrm{NaCN}{ }^{26}$ significantly shortened the reaction time to 2 days giving 8a in acceptable 55% yield (method C, entry 3). Using these optimized conditions (method C), we were able to prepare a small set of amides starting from methyl-, dimethyl- and cyclopropylamine as well as piperidine. In all cases we observed higher reactivity of primary amines compared to secondary and the yields varied from moderate to excellent (Table V, entries 4-13). The only unsuccessful reaction was amidation of TBS-protected purine 2d with cyclopropylamine, where only degradation of the starting material occurred (entry 14).

A large series of 6 -(β-substituted ethyl)purines was previously pre pared ${ }^{13,27}$ by conjugate additions to 6 -vinylpurines and many of them displayed cytostatic and antiviral effect. Therefore, we wanted to explore an alternative approach to the synthesis of this class of compounds starting from 6-(2-hydroxyethyl)purines via nucleophilic substitutions of reactive mesylates. Treatment of 6-(2-hydroxyethyl)purines 6a, 6d with methanesulfonic anhydride in presence of triethylamine and DMAP in dichloromethane gave unstable mesylates which were directly (without characterization) used in the reaction with nucleophiles (Scheme 7, Table VI). The

Table VI
Mesylations of alcohols 6 followed by nucleophilic substitutions

Entry	Starting alcohol	Nucleophile	Product	Yield, \%
1	$\mathbf{6 a}$	$\mathrm{MeONa} / \mathrm{MeOH}$	11a	76
2	$\mathbf{6 a}$	$\mathrm{Me} \mathrm{NH} / \mathrm{MeCN}$	12a	88
3	$\mathbf{6 a}$	$\mathrm{MeSNa} / \mathrm{EtOH}$	$\mathbf{1 3 a}$	60
4	$\mathbf{6 d}$	$\mathrm{MeONa} / \mathrm{MeOH}$	11d	63
5	$\mathbf{6 d}$	$\mathrm{Me} N \mathrm{NH} / \mathrm{MeCN}$	$\mathbf{1 4 d}$	78
6	6d	$\mathrm{MeSNa} / \mathrm{EtOH}$	$\mathbf{1 4 d}$	85

reactions of the mesylates with $\mathrm{MeONa}, \mathrm{Me}_{2} \mathrm{NH}$ and MeSNa were attempted. The benzylpurine mesylate gave the desired products of nucleophilic substitution: 6-(2-methoxyethyl)- (11a), 6-[2-(dimethylamino)ethyl](12a) and 6-[2-(methylsulfanyl)ethyl]purine (13a) in good yields. On the other hand, in analogous reaction of nucleoside $\mathbf{6 d}$ the mesylate was very unstable and the starting material spontaneously eliminated in the reaction with dimethylamine or sodium methanthiolate to give 6-vinylpurine 14d. Only the reaction with sodium methoxide gave the desired (2-methoxyethyl)purine nucleoside 11d. This four-step reaction sequence (crosscoupling, reduction, mesylation and nucleophilic substitution) to compounds 11-13 is certainly longer, less efficient and of more limited scope

Table VII
Deprotections of purine bases and nucleosides

Entry	Protected compound	Reagent	Product	Yield, \%
1	$\mathbf{2 b}$	Dowex $50\left(\mathrm{H}^{+}\right), \mathrm{EtOH}$	$\mathbf{2 g}$	93
2	$\mathbf{6 b}$	Dowex $50\left(\mathrm{H}^{+}\right), \mathrm{EtOH}$	$\mathbf{6 g}$	75
3	$\mathbf{7 b}$	Dowex $50\left(\mathrm{H}^{+}\right), \mathrm{EtOH}$	$\mathbf{7 g}$	64
4	$\mathbf{8 b}$	Dowex $50\left(\mathrm{H}^{+}\right), \mathrm{EtOH}$	$\mathbf{8 g}$	58
5	$\mathbf{9 b}$	Dowex $50\left(\mathrm{H}^{+}\right), \mathrm{EtOH}$	$\mathbf{9 g}$	75
6	$\mathbf{1 0 b}$	${\text { Dowex } 50\left(\mathrm{H}^{+}\right), \mathrm{EtOH}}_{\mathbf{1 0 g}}$		
7	$\mathbf{2 d}$	$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}$	67	
8	$\mathbf{6 d}$	$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}$	$\mathbf{2 h}$	96
9	$\mathbf{7 d}$	$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}$	$\mathbf{6 h}$	92
10	$\mathbf{8 d}$	$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}$	$\mathbf{7 h}$	88
11	$\mathbf{9 d}$	$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}$	$\mathbf{8 h}$	91
12	$\mathbf{2 f}$	$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}$	$\mathbf{9 h}$	98
13	$\mathbf{6 f}$	$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}, \mathrm{THF}$	$\mathbf{2 i}$	69

than the alternative conjugate additions ${ }^{13,27}$ to 6 -vinylpurines. However, this sequence avoids the use of toxic stannane reagents used for preparation of 6 -vinylpurines.

Finally, protecting groups were removed by stardard methods to produce free purine bases and nucleosides. THP groups in protected bases 2b, 6b, 7b, $\mathbf{8 b}, \mathbf{9 b}, \mathbf{1 0 b}$ were cleaved using catalytic amount of Dowex $50\left(\mathrm{H}^{+} \text {form }\right)^{28}$ in ethanol at elevated temperature for 3 h (Scheme 8, Table VII) to give the corresponding free $\mathbf{9 H}$-purine bases $\mathbf{2 g}, \mathbf{6 g}, \mathbf{7 g}, \mathbf{8 g}, \mathbf{9 g}, \mathbf{1 0 g}$ (entries 1-6). The TBS-protected purine nucleosides $\mathbf{2 d}, \mathbf{2 f}, \mathbf{6 d}, \mathbf{6 f}$ and $\mathbf{7 d}, \mathbf{8 d}, \mathbf{9 d}$ were deprotected by $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}{ }^{11}$ (1.5 equiv. for each TBS group) in THF. Free purine nucleosides $\mathbf{2 h}, \mathbf{2 i}, \mathbf{6 h}, \mathbf{6 i}$ and $\mathbf{7 h}, \mathbf{8 h}, \mathbf{9 h}$ were obtained at room temperature after 18 h in good to excellent yields (entries 7-13).

All compounds were fully characterized by analytical and spectral methods. In addition, crystal structures of 2a, 6a and $\mathbf{9 a}$ were determined by X-ray diffraction (Fig. 1). In compound 6a, an intermolecular H-bond to N7 of the neighboring molecule is present instead of expected intramolecular H -bond of OH to N 1 or N 7 .

In conclusion, an efficient methodology for the cross-coupling of 6 -chloropurine bases and nucleosides with the Reformatsky reagent was developed giving an access to (purin-6-yl)acetates. These compounds are versatile intermediates useful for the synthesis of 6-(2-hydroxyethyl)purines by reduction and 6-(carbamoylmethyl)purines by amidations. The 6-(2hydroxyethyl)purines can be further transformed to reactive mesylates

Fig. 1
Crystal structures of $\mathbf{2 a}$ (a), $\mathbf{6 a}$ (b) and $\mathbf{9 a}$ (c). Thermal ellipsoids at the 50\% probability level
convertible to ethers, amines and thioethers. All the final deprotected compounds underwent screening for cytostatic and anti-HCV activities. Unfortunately, none of them showed any considerable activity.

EXPERIMENTAL

NMR spectra were recorded on a Bruker Avance 400 spectrometer (${ }^{1} \mathrm{H}$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $100.6 \mathrm{MHz})$, a Bruker Avance $500\left({ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125.8 MHz$)$ and a Bruker Avance $600\left({ }^{1} \mathrm{H}\right.$ at $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 151 MHz). Chemical shifts (in ppm, δ-scale) were referenced to TMS as internal standard. Coupling constants (J) are given in Hz. The assignment of carbons was based on C,H-HSQC and C,H-HMBC experiments. IR spectra (wavenumbers in cm^{-1}) were recorded on a Bruker IFS 88 spectrometer. Melting points were determined on a Kofler block and are uncorrected. Optical rotations were measured at $25^{\circ} \mathrm{C}$ on a Autopol IV (Rudolph Research Analytical) polarimeter, $[\alpha]_{D}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Mass spectra were measured on a ZAB-EQ (VG Analytical) spectrometer.

Preparation of [(Ethoxycarbonyl)methyl]zinc Bromide and Its Cross-Coupling Reactions with 6-Chloropurines 1a-1f. General Procedure

A solution of ethyl bromoacetate ($417.5 \mathrm{mg}, 278.33 \mu \mathrm{l}, 2.5 \mathrm{mmol}$) in THF (3 ml) prepared under argon was added at room temperature to an argon-purged flask containing suspension of zinc dust ($327.4 \mathrm{mg}, 5 \mathrm{mmol}$) in THF (2 ml), which was preactivated with trimethylsilyl chloride ($15 \mu \mathrm{l}$). The suspension was stirred for 1 h , zinc was allowed to settle and 4 ml of supernatant was transferred through a septum to a mixture of 6 -chloropurine $\mathbf{1 a}$ (122 mg , $0.5 \mathrm{mmol}), \mathrm{Pd}_{2} \mathrm{dba}_{3}(8 \mathrm{mg}, 0.01 \mathrm{mmol})$ and JohnPhos ($12 \mathrm{mg}, 0.04 \mathrm{mmol}$) in THF (1 ml) prepared under argon. The reaction mixture was stirred for 12 h and then quenched with $1 \mathrm{~m} \mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{ml})$ and extracted with chloroform ($3 \times 30 \mathrm{ml}$). Collected organic layers were dried over anhydrous MgSO_{4}, filtered and the solvent was evaporated. The residue was chromatographed on silica gel column (ethyl acetate/hexane) to give pure 9-benzyl-6-[(2-ethoxycarbonyl)methyl]-9H-purine (2a). Yellowish crystals (91\%) were obtained by crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /heptane.

9-Benzyl 6-[2-(ethoxycarbonyl)methyl]-9H-purine (2a). Yellowish crystals, m.p. 90-96 ${ }^{\circ} \mathrm{C} . \mathrm{MS}$ (FAB): 297 (100, M + 1). HRMS (FAB): for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated 297.1351, found 297.1356. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{3}\right) ; 4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.26(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}-6$); 5.45 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-9$); 7.29-7.41 (m, $5 \mathrm{H}, \mathrm{Ph}$); 8.04 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.97 (s, 1 H , $\mathrm{H}-2) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.11\left(\mathrm{CH}_{3}\right) ; 39.03\left(\mathrm{CH}_{2}-6\right) ; 47.37\left(\mathrm{CH}_{2}-9\right) ; 61.36$ $\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 127.92$ (CH-o-Ph); 128.66 (CH-p-Ph); 129.16 (CH-m-Ph); 133.00 (C-5); 134.93 (C-i-Ph); 144.33 (CH-8); 151.32 (C-4); 152.62 (CH-2); 154.55 (C-6); 169.21 (CO). MS (FAB): 297 (100, M + 1). IR: 2983, 1744, 1599, 1500, 1407, 1333, 1178. For $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ (296.1) calculated: C 64.85\%, H 5.44\%, N 18.91\%; found: C 64.46\%, H 5.37\%, N 18.50\%.

6-[2-(Ethoxycarbonyl)methyl]-9-(tetrahydropyran-2-yl)-9H-purine (2b). Yellowish crystals. MS (FAB): 291 (25, M + 1), 207 (100). HRMS (FAB): for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$ calculated 291.1457, found 291.1463. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 1.63-1.88$ and 2.00-2.20 ($2 \times \mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}$-THP); 3.80 (dt, $1 \mathrm{H}, \mathrm{J}=11.7,2.6, \mathrm{bCH}_{2} \mathrm{O}-\mathrm{THP}$); 4.19 (ddt, 1 H , $\left.\mathrm{J}=11.7,4.1,1.9, \mathrm{aCH}_{2} \mathrm{O}-\mathrm{THP}\right) ; 4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.23$ and $4.28(2 \times \mathrm{d}, 2 \mathrm{H}$, $\left.J_{\text {gem }}=15.9, \mathrm{CH}_{2}-6\right) ; 5.80(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.2,2.7, \mathrm{CHO}-\mathrm{THP}) ; 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.93(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.12\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 22.73,24.83$ and $31.82\left(\mathrm{CH}_{2}-\mathrm{THP}\right)$; $39.09\left(\mathrm{CH}_{2}-6\right) ; 61.37\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 68.85\left(\mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}\right) ; 82.06$ (CHO-THP); $133.20(\mathrm{C}-5) ; 142.35$ (CH-8); 150.49 (C-4); 152.43 (CH-2); 154.57 (C-6); 169.17 (CO). IR (CCI 4): 2980, 2948, 2856, 1743, 1600, 1494, 1411, 1334, 1087, 1046.

6 -[2-(Ethoxycarbonyl)methyl]-9-(2,3,5-tri-O-4-methylbenzoyl- β-d-ribofuranosyl)-9H-purine (2c). Yellowish foam. MS (FAB): 693 (4, M + 1), 487 (10), 215 (10), 119 (100), 91 (17). HRMS (FAB): for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{9}$ calculated 693.2560 , found 693.2543 . ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.25\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 2.38$ and $2.42\left(2 \times \mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Tol}\right) ; 4.20(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.21$ and $4.24\left(2 \times \mathrm{d}, 2 \mathrm{H}, \mathrm{J}_{\text {gem }}=15.8, \mathrm{CH}_{2} \mathrm{CO}\right) ; 4.67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.2, \mathrm{~J}_{5^{\prime}, 4^{4}}=\right.$ 4.1, $\mathrm{H}-5^{\prime} \mathrm{b}$); $4.82\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 3^{\prime}}=4.5, \mathrm{~J}_{4^{\prime}, 5^{\prime}}=4.1,3.1, \mathrm{H}-4^{\prime}\right) ; 4.89\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.2, \mathrm{~J}_{5^{\prime}, 4^{4}}=\right.$ 3.1, $\mathrm{H}-5^{\prime} \mathrm{a}$); 6.22 (dd, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=5.7, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=4.5, \mathrm{H}-3^{\prime}$); $6.38\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2^{\prime}, 3^{3}}=5.7, \mathrm{~J}_{2^{2}, 1^{\prime}}=5.5\right.$, $\mathrm{H}-2^{\prime}$); 6.43 (d, $1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{2}}=5.5, \mathrm{H}-1^{\top}$); 7.16, 7.22 and $7.26(3 \times \mathrm{m}, 3 \times 2 \mathrm{H}, \mathrm{H}-\mathrm{m}-\mathrm{Tol}) ; 7.82$, 7.90 and $8.00(3 \times \mathrm{m}, 3 \times 2 \mathrm{H}, \mathrm{H}-\mathrm{o}-\mathrm{Tol}) ; 8.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.12\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 21.70$ and $21.73\left(\mathrm{CH}_{3}\right.$-Tol); $39.12\left(\mathrm{CH}_{2} \mathrm{CO}\right) ; 61.41$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 63.47\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 71.41\left(\mathrm{CH}-3^{\prime}\right) ; 73.69\left(\mathrm{CH}-2^{\prime}\right) ; 81.06\left(\mathrm{CH}-4^{\prime}\right) ; 86.83\left(\mathrm{CH}-1^{\prime}\right) ; 125.64$, 126.02 and 126.58 (C-i-Tol); 129.22, 129.26 and 129.35 (CH-m-Tol); 129.79, 129.88 and 129.90 (CH-o-Tol); 133.76 (C-5); 143.16 (CH-8); 144.23, 144.58 and 144.69 (C-p-Tol); 150.96 (C-4); 152.73 (CH-2); 155.00 (C-6); 165.17, 165.38 and 166.20 (CO-Tol); 168.32 (COOEt). IR (CCI_{4}): 2983, 1733, 1613, 1600, 1266, 1179, 1093, 1021.

6-[2-(Ethoxycarbonyl)methyl]-9-[2,3,5-tri-O-(tert-butyldimethylsilyl)- β-d-ribofuranosyl]-9Hpurine (2d). Yellow oil. MS (FAB): 681 ($10, \mathrm{M}+1$), 72 (100). HRMS (FAB): for $\mathrm{C}_{32} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}_{3}$ calculated 681.3899, found $681.3885 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $-0.25,-0.04,-0.10,0.11$, 0.14 and $0.15\left(6 \times \mathrm{s}, 6 \times 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ; 0.79,0.94$ and $0.96\left(3 \times \mathrm{s}, 3 \times 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 1.25(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{J}_{\text {vic }}=7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 3.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.5, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=2.8, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 4.03\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=\right.$ $\left.11.5, \mathrm{~J}_{5^{\prime}, 4^{\prime}}=3.9, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 4.15$ (td, $\left.1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=3.9,2.8, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.7, \mathrm{H}-4^{\prime}\right) ; 4.21\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\text {vic }}=\right.$ 7.1, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.24$ and $4.28\left(2 \times \mathrm{d}, \mathrm{J}_{\text {gem }}=15.9, \mathrm{CH}_{2}\right.$-pur); $4.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3,2^{\prime}}=4.4, \mathrm{~J}_{3,4^{4}}=3.7\right.$, $\mathrm{H}-3^{\prime}$); 4.68 (dd, $1 \mathrm{H}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=5.1, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.4, \mathrm{H}-2^{\prime}$); $6.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=5.1, \mathrm{H}-1^{\prime}\right) ; 8.42(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8)$; $8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-5.36,-5.08,-5.08,-4.72$ and -4.69 $\left(\mathrm{CH}_{3} \mathrm{Si}\right) ; 14.11\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 17.83,18.08$ and $18.54\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) ; 25.63,25.84 \text { and } 26.09}\right.$ (($\left.\left.\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 39.10\left(\mathrm{CH}_{2}\right.$-pur); $61.31\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 62.47\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 71.87\left(\mathrm{CH}-3^{\prime}\right) ; 75.91\left(\mathrm{CH}-2^{\prime}\right)$; 85.55 (CH-4'); 88.36 (CH-1'); 133.68 (C-5); 143.48 (CH-8); 151.04 (C-4); 152.34 (CH-2); 154.54 (C-6); 169.17 (CO). IR (CCI $)$: 2956, 2931, 2859, 1746, 1599, 1472, 1255, 1166, 1072. For $\mathrm{C}_{32} \mathrm{H}_{60} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}_{3}$ (680.3) calculated: C $56.43 \%, \mathrm{H} 8.88 \%, \mathrm{~N} 8.23 \%$; found: C 56.47%, H 8.98\%, N 7.96\%.

9-(2-D eoxy-3,5-di-O-4-methyl benzoyl- β-d-erythro-pentofuranosyl) -6-[2-(ethoxycarbonyl)methyl]$9 H$-purine (2e). Yellowish foam. MS (FAB): 559 (5, M + 1), 207 (55), 161 (15), 119 (100), 91 (20), 81 (87). HRMS (FAB): for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{7}$ calculated 559.2192, found 559.2173. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 2.41$ and $2.45\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Tol}\right)$; 2.85 (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=14.2, \mathrm{~J}_{2 \mathrm{~b}, 1^{\prime}}=5.8, \mathrm{~J}_{2^{\prime} \mathrm{b}, 3^{\prime}}=2.1, \mathrm{H}-2^{\prime} \mathrm{b}\right) ; 3.19$ (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=14.2$, $\left.\mathrm{J}_{2^{\prime}, 1^{\prime}}=8.4, \mathrm{~J}_{2^{\prime} \mathrm{a}, 3^{\prime}}=6.3, \mathrm{H}-2^{\prime} \mathrm{a}\right) ; 4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$; 4.62-4.70 (m, 2 H, H-5'b and H-4'); $4.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 5.84\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=6.3,2.1, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=\right.$ 2.1, $\mathrm{H}-3^{\prime}$); 6.60 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{1^{\prime 2}}=8.4,5.8, \mathrm{H}-1^{\prime}\right) ; 7.23$ and $7.29(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{H}-\mathrm{m}-$ Tol $)$; 7.91 and $7.98(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{H}-\mathrm{O}-\mathrm{Tol})$; $8.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.11\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 21.67$ and $21.73\left(\mathrm{CH}_{3}-\mathrm{Tol}\right) ; 37.77\left(\mathrm{CH}_{2}-2^{2}\right) ; 39.07$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right) ; 61.41\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 63.94\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 75.07\left(\mathrm{CH}-3^{\prime}\right) ; 83.12\left(\mathrm{CH}-4^{\prime}\right) ; 84.89\left(\mathrm{CH}-1^{\prime}\right)$; 126.34 and 126.62 (C-i-Tol); 129.29 (CH-m-Tol); 129.63 and 129.81 (CH-o-Tol); 133.77 (C-5); 142.77 (CH-8); 144.18 and 144.56 (C-p-Tol); 150.74 (C-4); 152.47 (CH-2); 154.85 (C-6);
165.93 and 166.14 (CO-Tol); 169.10 (COOEt). IR (CCl_{4}): 2983, 1728, 1613, 1599, 1266, 1178, 1100, 1021.

9-[3,5-Di-O-(tert-butyldimethylsilyl)-2-deoxy- β-d-erythro-pentofuranosyl)-6-[2-(ethoxycarbonyl)-methyl]-9H-purine (2f). Yellow oil. MS (FAB): 551 (10, M + 1), 207 (80), 72 (100). HRMS (FAB): for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{2}$ calculated 551.3085, found 551.3106. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $0.085,0.09$ and $0.12\left(3 \times \mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ; 0.91$ and $0.92\left(2 \times \mathrm{s}, 2 \times 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 1.27$ (t, $\left.3 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 2.46$ (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.1, \mathrm{~J}_{2^{\prime} \mathrm{b}, 1^{\prime}}=6.1, \mathrm{~J}_{2^{\prime} \mathrm{b}, 3^{\prime}}=3.7, \mathrm{H}-2^{\prime} \mathrm{b}\right) ; 2.69$ (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.1, \mathrm{~J}_{2^{\prime} \mathrm{a}, 1^{\prime}}=6.9, \mathrm{~J}_{2^{\prime} \mathrm{a}, 3^{\prime}}=5.8, \mathrm{H}-2^{\prime} \mathrm{a}\right) ; 3.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.2, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=3.2, \mathrm{H}-5^{\prime} \mathrm{b}\right)$; 3.88 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=11.2, \mathrm{~J}_{5^{\prime}, 4^{\prime}}=4.2, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 4.04\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=4.2,3.2, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.1, \mathrm{H}-4^{\prime}\right)$; $4.22\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.23$ and $4.27\left(2 \times \mathrm{d}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=15.8, \mathrm{CH}_{2} \mathrm{CO}\right) ; 4.64(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{J}_{3^{\prime}, 2^{\prime}}=5.8,3.7, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.1, \mathrm{H}-3^{\prime}\right) ; 6.52\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=6.9,6.1, \mathrm{H}-1^{\prime}\right) ; 8.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.91(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($125.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -5.49, $-5.39,-4.81$ and $-4.67\left(\mathrm{CH}_{3} \mathrm{Si}\right) ; 14.13$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 17.99$ and $18.41\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 25.74$ and $25.94\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 39.05\left(\mathrm{CH}_{2} \mathrm{CO}\right) ; 41.21$ $\left(\mathrm{CH}_{2}-2^{\prime}\right) ; 61.35\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 62.78\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 71.97\left(\mathrm{CH}-3^{\prime}\right) ; 84.50\left(\mathrm{CH}-1^{\prime}\right) ; 88.05\left(\mathrm{CH}-4^{\prime}\right)$; 133.68 (C-5); 143.12 (CH-8); 150.72 (C-4); 152.28 (CH-2); 154.47 (C-6); 169.23 (CO). IR (CCl_{4}): 2956, 2859, 1745, 1599, 1463, 1472, 1258, 1108, 1034. For $\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{2}$ (680.3) calculated: C 56.69\%, H 8.42\%, N 10.17\%; found: C 56.87\%, H 8.49\%, N 9.67\%.

Alkaline Hydrolysis of Ester 2a

NaOH ($60 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to a solution of ester $\mathbf{2 a}$ ($148 \mathrm{mg}, 0.5 \mathrm{mmol}$) in aqueous ethanol ($1: 1,5 \mathrm{ml}$) and the reaction was stirred at room temperature for 3 h . The reaction mixture was dilluted with water (15 ml) and chromatographed on Amberlite 67 (distilled water/0.1 м AcOH) to give 110 mg (98\%) of 9-benzyl-6-methyl-9H-purine (5a) as a white solid. ${ }^{1} \mathrm{H}$ NMR spectra were in accord with previously published data ${ }^{29}$.

Reduction of 6-[2-(Ethoxycarbonyl)methyl]purines 2a, 2b, 2d, $\mathbf{2 f}$ to
 (2-Hydroxyethyl)purines 6a, 6b, 6d, 6f. General Procedure

To a stirred solution of purine $\mathbf{2 a}$ ($296 \mathrm{mg}, 1 \mathrm{mmol}$) in EtOH (8 ml) was added excess of $\mathrm{NaBH}_{4}(380 \mathrm{mg}, 10 \mathrm{mmol})$, the reaction mixture was stirred at room temperature overnight and then quenched by addition of $\mathrm{MeOH}(8 \mathrm{ml})$ and $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$. Alcohols were evaporated and the residue extracted with chloroform ($3 \times 30 \mathrm{ml}$). Collected organic layers were dried over anhydrous MgSO_{4}, filtered and the solvent was evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml}), \mathrm{MnO}_{2}(174 \mathrm{mg}, 2 \mathrm{mmol})$ was added and the mixture was sonicated at ambient temperature for 1 h . Then the mixture was filtered through Celite and the solvent evaporated. The residue was chromatographed on silica gel column (chloroform/ methanol) to give yellowish oil. Alcohol 6a was obtained by crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane as white crystals ($208 \mathrm{mg}, 82 \%$).

9-Benzyl-6-(2-hydroxyethyl)-9H-purine (6a). White crystals, m.p. $72-73{ }^{\circ} \mathrm{C} . \mathrm{MS}$ (FAB): 255 (100, $\mathrm{M}+1$), 91 (55). HRMS (FAB): for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}$ calculated 255.1246, found 255.1242. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 3.45 (t, $2 \mathrm{H}, \mathrm{J}=5.4, \mathrm{CH}_{2}$-pur); 4.16 (bt, $2 \mathrm{H}, \mathrm{J}=5.4, \mathrm{CH}_{2}-\mathrm{O}$); 4.89 (bs, $1 \mathrm{H}, \mathrm{OH}$); 5.45 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{N}$); 7.28-7.40 (m, $5 \mathrm{H}, \mathrm{Ph}$); 8.04 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.90 (s, $1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 36.04\left(\mathrm{CH}_{2}-\right.$ pur $) ; 47.25\left(\mathrm{CH}_{2}-\mathrm{N}\right) ; 60.19\left(\mathrm{CH}_{2}-\mathrm{O}\right)$; 127.81 (CH-o-Ph); 128.58 (CH-p-Ph); 129.08 (CH-m-Ph); 132.15 (C-5); 134.85 (C-i-Ph); 143.71 (CH-8); 150.70 (C-4); 152.23 (CH-2); 161.14 (C-6). IR: 2931, 1596, 1500, 1407, 1331, 1196, 1063. For $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (254.1) calculated: C $66.13 \%, \mathrm{H} 5.55 \%, \mathrm{~N} 22.03 \%$; found: C 65.87%, H 5.47\%, N 21.90%.

9-Benzyl-6-(2-hydroxyethyl)-1,6-dihydro-9H-purine (6aH). Unstable compound isolated by chromatography after reduction of $\mathbf{2 a}$ with NaBH_{4} in EtOH without re-oxidation. It was not isolated as a pure compound, and identified by NMR only in mixture with 3a. ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, DM SO-d ${ }_{6}$): 1.76 (dq, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.4, \mathrm{~J}_{\text {vic }}=6.8,6.2, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-pur); 1.88 (dtd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.4$, $\mathrm{J}_{\text {vic }}=6.8,5.5, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$-pur); 3.54 and $3.62\left(2 \times \mathrm{dt}, 2 \mathrm{H}, \mathrm{J}_{\text {gem }}=10.8, \mathrm{~J}_{\text {vic }}=6.8, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.92(\mathrm{bt}$, $\left.1 \mathrm{H}, \mathrm{J}_{\text {vic }}=6.2,5.5, \mathrm{H}-6\right) ; 5.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right) ; 6.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{J}_{2, \mathrm{NH}}=3.8, \mathrm{H}-2\right) ; 7.23(\mathrm{~m}, 2 \mathrm{H}$, H-o-Ph); 7.32 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{m}-\mathrm{Ph}$); 7.34 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{p}-\mathrm{Ph}$); 7.53 (bd, $1 \mathrm{H}, \mathrm{J}_{\mathrm{NH}, 2}=3.8, \mathrm{NH}$); 8.32 (s, $1 \mathrm{H}, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $42.60\left(\mathrm{CH}_{2}-\mathrm{pur}\right) ; 45.82\left(\mathrm{CH}_{2} \mathrm{Ph}\right) ; 51.10(\mathrm{CH}-6)$; $57.56\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 119.96$ (C-5); 127.61 (CH-o-Ph); 127.88 (CH-p-Ph); 128.73 (CH-m-Ph); 132.58 (CH-8); 134.17 (C-4); 138.32 (C-i-Ph); 147.00 (CH-2).

6-(2-Hydroxyethyl)-9-tetrahydropyran-2-yl-9H-purine (6b). Yellowish oil. MS (FAB): 249 (10, $M+1$), 165 (100, M - THP), 85 (40, THP). HRMS (FAB): for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated 249.1351, found 249.1342. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : 1.65-1.87 and 2.02-2.20 ($2 \times \mathrm{m}, 6 \mathrm{H}$, $\mathrm{CH}_{2}-\mathrm{THP}$); 3.45 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); $3.80\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=11.8,2.6, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}-\mathrm{THP}\right.$); 4.16 (t, 2 H , $\mathrm{J}_{\text {vic }}=5.3, \mathrm{CH}_{2} \mathrm{O}$); 4.19 (ddt, $1 \mathrm{H}, \mathrm{J}=11.8,4.3,1.9, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{O}-\mathrm{THP}$); 4.71 (bs, $1 \mathrm{H}, \mathrm{OH}$); 5.80 (dd, $1 \mathrm{H}, \mathrm{J}=10.5,2.5, \mathrm{CHO}-\mathrm{THP}$); 8.28 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$); 8.88 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.70, 24.80 and $31.82\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 36.01\left(\mathrm{CH}_{2}\right.$-pur); $60.29\left(\mathrm{CH}_{2} \mathrm{O}\right)$; 68.86 ($\mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}$); 82.00 (CHO-THP); 132.34 (C-5); 141.76 (CH-8); 149.95 (C-4); 152.12 (CH-2); 161.35 (C-6). IR $\left(\mathrm{CCl}_{4}\right): 3392,2949,2931,2858,1598,1410,1333,1210,1047$.

6-(2-Hydroxyethyl)-9-[2,3,5-tri-O-(tert-butyldimethylsilyl)- β-d-ribofuranosyl]-9H-purine (6d). White foam. MS (FAB): 639 (100, M + 1), 343 (30), 288 (35). HRMS (FAB): for $\mathrm{C}_{30} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{3}$ calculated 639.3793, found 639.3776. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-0.22,-0.03,0.10,0.11$, 0.14 and $0.15\left(6 \times \mathrm{s}, 6 \times 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ; 0.80,0.94$ and $0.96\left(3 \times \mathrm{s}, 3 \times 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 3.45(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 3.81 (dd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.5, \mathrm{~J}_{5^{\prime} b, 4^{\prime}}=2.6, \mathrm{H}-5^{\prime} \mathrm{b}$); 4.04 (dd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.5$, $\left.\mathrm{J}_{5^{\prime}, 4^{\prime}}=3.8, \mathrm{H}-5^{\prime} \mathrm{a}\right)$; 4.13-4.18 (m,3 H, H-4' and $\left.\mathrm{CH}_{2}-\mathrm{O}\right) ; 4.33\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=4.3, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.9\right.$, $\left.\mathrm{H}-3^{\prime}\right) ; 4.65\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=4.9, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.3, \mathrm{H}-2^{\prime}\right) ; 6.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=4.9, \mathrm{H}-1^{\prime}\right) ; 8.47(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8$); 8.86 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-5.37,-5.06,-4.73,-4.69$ and -4.39 $\left(\mathrm{CH}_{3} \mathrm{Si}\right) ; 17.84,18.07$ and $18.52\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 25.62,25.82$ and $26.07\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 36.08$ $\left(\mathrm{CH}_{2}\right.$-pur); $60.31\left(\mathrm{CH}_{2}-\mathrm{O}\right) ; 62.36\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 71.75\left(\mathrm{CH}-3^{\prime}\right) ; 76.04\left(\mathrm{CH}-2^{\prime}\right) ; 85.48\left(\mathrm{CH}-4^{\prime}\right) ; 88.36$ (CH-1'); 132.76 (C-5); $142.94(\mathrm{CH}-8) ; 150.53(\mathrm{C}-4) ; 152.02(\mathrm{CH}-2) ; 161.32(\mathrm{C}-6) . \mathrm{IR}\left(\mathrm{CCl}_{4}\right)$: 3409, 2956, 2931, 2859, 1597, 1472, 1255, 1071, 839. For $\mathrm{C}_{30} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{3}$ (639.0) calculated: C 56.38\%, H 9.15\%, N 8.77\%; found: C 56.38%, H 9.25\%, N 8.30\%.

9-[3,5-Di-O-(tert-butyldimethylsilyl)-2-deoxy- β-D-erythro-pentofuranosyl)-6-(2-hydroxyethyl)-9Hpurine (6f). Yellow oil. MS (FAB): 509 (20, M + 1), 165 (60), 73 (100). HRMS (FAB): for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{2}$ calculated 509.2979, found 509.2971. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.08, 0.09 and $0.11\left(3 \times \mathrm{s}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ; 0.90$ and $0.92\left(2 \times \mathrm{s}, 2 \times 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 2.48$ (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=$ 13.1, $\left.\mathrm{J}_{2^{\prime} b, 1^{\prime}}=6.2, \mathrm{~J}_{2^{\prime} b, 3^{\prime}}=4.0, \mathrm{H}-2^{\prime} \mathrm{b}\right) ; 2.66$ (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.1, \mathrm{~J}_{2^{\prime} a, 1^{\prime}}=7.4, \mathrm{~J}_{2^{\prime} a, 3^{\prime}}=5.7$, $\mathrm{H}-2^{\prime} \mathrm{a}$); 3.44 (t, $2 \mathrm{H}, \mathrm{J}=5.3, \mathrm{CH}_{2}$-pur); 3.78 (dd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.3, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=3.0, \mathrm{H}-5^{\prime} \mathrm{b}$); 3.88 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.3, \mathrm{~J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=3.9, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 4.04\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=3.9,3.0, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.7, \mathrm{H}-4^{\prime}\right) ; 4.16(\mathrm{bt}$, $\left.2 \mathrm{H}, \mathrm{J}=6.4, \mathrm{CH}_{2}-\mathrm{O}\right) ; 4.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=5.7,4.0, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.7, \mathrm{H}-3^{\prime}\right) ; 4.90(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}) ; 6.53$ (t, $1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=7.4,6.2, \mathrm{H}-1^{\prime}$); $8.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \mathrm{NMR}(125.8 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right):-5.49,-5.40,-4.81$ and $-4.66\left(\mathrm{CH}_{3} \mathrm{Si}\right) ; 18.00$ and $18.41\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) ;} 25.74\right.$ and 25.93 $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 36.16\left(\mathrm{CH}_{2}-\right.$ pur $) ; 41.37\left(\mathrm{CH}_{2}-2^{\prime}\right) ; 60.35\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 62.69\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 71.81\left(\mathrm{CH}-3^{\prime}\right) ;$ 84.52 ($\mathrm{CH}-1^{\prime}$); 88.06 ($\mathrm{CH}-4^{\prime}$); 132.81 (C-5); 142.54 (CH-8); 150.18 (C-4); 151.98 (CH-2); 161.28 (C-6). IR $\left(\mathrm{CCl}_{4}\right): 3401,2956,2931,2859,1598,1472,1258,1109,839$. For $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{2}$ (508.8) calculated: C $56.65 \%, \mathrm{H} 8.72 \%, \mathrm{~N} 11.01 \%$; found: C $56.87 \%, \mathrm{H} 9.09 \%$, N 10.38\%.

Amidation of Esters 2a, 2b, 2d. General Procedure
Mixture of ester $\mathbf{2 a}$ ($296 \mathrm{mg}, 1 \mathrm{mmol}$) and NaCN ($5 \mathrm{mg}, 0.1 \mathrm{mmol}$) was dissolved in 5.6 m solution of dimethylamine in $\mathrm{EtOH}(1.78 \mathrm{ml}, 10 \mathrm{mmol})$ and additional ethanol (2 ml) was added. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 h , then evaporated and extracted with chloroform ($3 \times 50 \mathrm{ml}$). Collected organic layers were dried over anhydrous MgSO_{4}, filtered and the solvent was evaporated. The residue was chromatographed on silica gel column (ethyl acetate/methanol) to give 9-benzyl-6-[(dimethylcarbamoyl)methyl]-9H-purine (8a) in 55% yield. Yellow crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane.

9-Benzyl-6-[(methylcarbamoyl)methyl]-9H-purine (7a). Prepared from ester $\mathbf{2 a}$ ($148 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 33% solution of methylamine in $\mathrm{EtOH}(582 \mu \mathrm{l}, 5 \mathrm{mmol})$ and additional ethanol (1.5 ml). Yield 67%, yellowish crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane, m.p. 119-122 ${ }^{\circ} \mathrm{C}$. MS (FAB): 282 (100, $\mathrm{M}+1$), 251 (10), 91 (50). HRMS (FAB): for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}$ calculated 282.1354, found 282.1365. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.84\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.8, \mathrm{CH}_{3}\right.$); 4.20 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-6$); 5.45 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-9$); 7.28-7.45 (m, $6 \mathrm{H}, \mathrm{NH}$ and Ph); 8.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$); 8.95 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $26.41\left(\mathrm{CH}_{3}\right) ; 39.94\left(\mathrm{CH}_{2}-6\right) ; 47.43\left(\mathrm{CH}_{2}-9\right)$; 127.92 (CH-o-Ph); 128.72 (CH-p-Ph); 129.20 (CH-m-Ph); 132.67 (C-5); 134.84 (C-i-Ph); 144.42 (CH-8); 151.24 (C-4); 152.31 (CH-2); 155.73 (C-6); 168.01 (CO). IR (CCI $)_{4}$: 2928, 2360, 1687, 1597, 1499, 1333. For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O} \cdot 3 / 5 \mathrm{H}_{2} \mathrm{O}$ (292.0) calculated: C $61.67 \%, \mathrm{H} 5.59 \%$, N 23.97\%; found: C 61.72\%, H 5.30\%, N 23.38\%.

9-Benzyl-6-[(dimethylcarbamoyl)methyl]-9H-purine (8a). Yield 55\%, yellow crystals, m.p. 115-121 ${ }^{\circ} \mathrm{C} . \mathrm{MS}(F A B): 296$ (100, $\mathrm{M}+1$), 251 (10), 91 (40). HRMS (FAB): for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}$ calculated 296.1511, found 296.1515. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.00$ and $3.15(2 \times \mathrm{s}, 2 \times$ $3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$); 4.32 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-6$); 5.44 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-9$); 7.32 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{o}-\mathrm{Ph}$); 7.36 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{m}-\mathrm{Ph}$); 7.37 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{p}-\mathrm{Ph}$); 8.03 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.96 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR $\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 35.58$ and $37.72\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ; 38.47\left(\mathrm{CH}_{2}-6\right) ; 47.30\left(\mathrm{CH}_{2}-9\right) ; 127.92$ (CH-o-Ph); 128.60 (CH-p-Ph); 129.12 (CH-m-Ph); 133.06 (C-5); 134.95 (C-i-Ph); 144.13 (CH-8); 151.08 (C-4); 152.60 (CH-2); 156.06 (C-6); 168.32 (CO). IR $\left(\mathrm{CCI}_{4}\right): 3035,2932,1662$, 1591, 1499, 1395, 1333, 773.

9-Benzyl-6-[(piperidine-1-carbonyl)methyl]-9H-purine (9a). Prepared from ester 2a (0.5 mmol) and piperidine ($494 \mu \mathrm{l}, 5 \mathrm{mmol}$) as yellowish crystals, yield 60%, m.p. $123-125{ }^{\circ} \mathrm{C}$. MS (FAB): 693 (100, $2 \mathrm{M}+\mathrm{Na}$), 358 (20, $\mathrm{M}+\mathrm{Na}$), 336 (20, M + H). HRMS (FAB): for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{NaO}$ calculated 358.1638, found 358.1641. IR $\left(\mathrm{CCl}_{4}\right)$: 2941, 2858, 1648, 1592, 1443, 1333, 1214. For $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O} \cdot 1 / 6 \mathrm{H}_{2} \mathrm{O}$ (338.4) calculated: C $67.43 \%, \mathrm{H} 6.35 \%, \mathrm{~N} 20.70 \%$; found: C 67.63\%, H 6.31\%, N 20.70\%.

9-Benzyl-6-[(cyclopropylcarbamoyl)methyl]-9H-purine (10a). Prepared from ester 2a (290 mg, 1 mmol) and ethanol (1.5 ml), and cyclopropylamine ($571 \mathrm{mg}, 692 \mu \mathrm{l}, 10 \mathrm{mmol}$). Yield 51%, white crystals were obtained after crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane, m.p. $114-122{ }^{\circ} \mathrm{C}$. MS (FAB): 308 (55, M + 1), 251 (20), 91 (100). HRMS (FAB): for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ calculated 308.1511, found 308.1522. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.51$ and $0.75(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}$, CH_{2}-cyclopropyl); 2.73 (tt, $1 \mathrm{H}, \mathrm{J}=7.2,3.9, \mathrm{CH}$-cyclopropyl); 4.16 (s, $2 \mathrm{H}, \mathrm{CH}_{2}-6$); 5.45 (s , $2 \mathrm{H}, \mathrm{CH}_{2}-9$); 7.32 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{o}-\mathrm{Ph}$); 7.36 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{m}-\mathrm{Ph}$); 7.38 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{p}-\mathrm{Ph}$); 7.64 (bs, $1 \mathrm{H}, \mathrm{NH}$); 8.05 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.94 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.44$ (CH_{2}-cyclopropyl); 22.67 (CH -cyclopropyl); $39.95\left(\mathrm{CH}_{2}-6\right) ; 47.41\left(\mathrm{CH}_{2}-9\right) ; 127.89$ (CH-o-Ph); 128.72 (CH-p-Ph); 129.19 (CH-m-Ph); 132.64 (C-5); 134.80 (C-i-Ph); 144.38 (CH-8); 151.20 (C-4); 152.22 (CH-2); 155.59 (C-6); $168.70(\mathrm{CO}) . \operatorname{IR}\left(\mathrm{CCl}_{4}\right): 3328,3034,1690,1596,1499$,

1333, 1196, 726. For $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$ (311.8) calculated: $\mathrm{C} 65.47 \%, \mathrm{H} 5.66 \%, \mathrm{~N} 22.46 \%$; found: C 65.31\%, H 5.60\%, N 22.24\%.

6-[(M ethylcarbamoyl)methyl]-9-tetrahydropyran-2-yl-9H-purine (7b). Prepared from ester 2b (0.5 mmol) and 33% solution of methylamine in EtOH (5 mmol) as white crystals, yield 95\%, m.p. 119-121 ${ }^{\circ} \mathrm{C} . \mathrm{MS}$ (FAB): 572 (100, $2 \mathrm{M}+\mathrm{Na}$), 298 (35, M + Na), 276 (10, M + H). HRMS (FAB): for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{NaO}_{2}$ calculated 298.1274, found 298.1278. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): 1.62-1.86 and 1.99-2.18 ($2 \times \mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{THP}$); $2.79\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.9, \mathrm{CH}_{3}\right.$); 3.77 (dt, $1 \mathrm{H}, \mathrm{J}=11.7,2.6, \mathrm{bCH}_{2} \mathrm{O}-\mathrm{THP}$); 4.12-4.21 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}$); 4.16 and $4.17(2 \times \mathrm{s}$, $2 \mathrm{H}, \mathrm{CH}_{2}-6$); 5.76 (dd, $1 \mathrm{H}, \mathrm{J}=10.1$ and 2.6, CHO-THP); 7.38 (bs, $1 \mathrm{H}, \mathrm{NH}$); 8.27 (s, 1 H , $\mathrm{H}-8) ; 8.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right): 22.66,24.76$ and $31.72\left(\mathrm{CH}_{2}\right.$-THP); $26.37\left(\mathrm{CH}_{3}\right) ; 40.05\left(\mathrm{CH}_{2}-6\right) ; 68.81\left(\mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}\right) ; 82.05(\mathrm{CHO}-\mathrm{THP}) ; 132.81(\mathrm{C}-5) ; 142.41$ (CH-8); 150.36 (C-4); 152.10 (CH-2); 155.67 (C-6); 167.97 (CO). IR ($\left.\mathrm{CCl}_{4}\right): 3358,2948,2857$, 1686, 1598, 1334, 1211, 1088.

6-[(Dimethyl carbamoyl)methyl]-9-tetrahydropyran-2-yl-9H-purine (8b). Prepared from ester 2b (0.5 mmol) and 5.6 m solution of dimethylamine in $\mathrm{EtOH}(893 \mu \mathrm{l}, 5 \mathrm{mmol}$) as yellowish crystals, yield 49\%, m.p. $142-144^{\circ} \mathrm{C}$. MS (FAB): 600 (100, $2 \mathrm{M}+\mathrm{Na}$), 312 ($40, \mathrm{M}+\mathrm{Na}$), 289 (10, $\mathrm{M}+\mathrm{H}$). HRMS (FAB): for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{NaO}_{2}$ calculated 312.1431, found 312.1435. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.60-1.88 and 1.98-2.18 ($2 \times \mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{THP}$); 2.99 and $3.12(2 \times \mathrm{s}, 2 \times$ $3 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); 3.78 (dt, $1 \mathrm{H}, \mathrm{J}=11.6,2.5, \mathrm{bCH}_{2} \mathrm{O}-\mathrm{THP}$); 4.13-4.21 (m, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}$); 4.28 and $4.31\left(2 \times d, 2 \mathrm{H}, \mathrm{J}_{\text {gem }}=15.4, \mathrm{CH}_{2}-6\right)$; 5.77 (dd, $1 \mathrm{H}, \mathrm{J}=9.9,2.6, \mathrm{CHO}-\mathrm{THP}$); 8.25 (s, 1 H , $\mathrm{H}-8$); 8.91 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 22.73,24.83$ and $31.83\left(\mathrm{CH}_{2}\right.$-THP); 35.59 and $37.72\left(2 \times \mathrm{CH}_{3}\right) ; 38.56\left(\mathrm{CH}_{2}-6\right) ; 68.82\left(\mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}\right) ; 82.01(\mathrm{CHO}-\mathrm{THP}) ; 133.21$ (C-5); 142.14 ($\mathrm{CH}-8$); $150.27(\mathrm{C}-4) ; 152.42(\mathrm{CH}-2) ; 156.07(\mathrm{C}-6) ; 168.32(\mathrm{CO}) . \operatorname{IR}\left(\mathrm{CCl}_{4}\right):$ 2947, 2857, 1664, 1593, 1495, 1395, 1335, 1211, 1088. For $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}$ (292.9) calculated: C 57.40%, H 6.68%, N 23.91%; found: C 57.49%, H 6.55%, N 23.49%.

6-[(Piperidine-1-carbonyl)methyl]-9-tetrahydropyran-2-yl-9H-purine (9b). Prepared from ester 2b (0.5 mmol) and piperidine ($494 \mu \mathrm{l}, 5 \mathrm{mmol}$) as yellowish crystals, yield 41%, m.p. 151-155 ${ }^{\circ} \mathrm{C}$. MS (FAB): 681 (100, $2 \mathrm{M}+\mathrm{Na}$), 352 (55, M + Na), $330(20, \mathrm{M}+\mathrm{H}$). HRMS (FAB): for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{NaO}_{2}$ calculated 352.1744 , found 352.1748 . ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 1.55 (m, 4 H, H-3,5-pip); 1.63 (m, 2 H, H-4-pip); 1.66-1.70, 1.73-1.85 and 2.00-2.20 ($3 \times \mathrm{m}$, $6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{THP}$); 3.50 and $3.53(2 \times$ ddd, $2 \times 1 \mathrm{H}$, J gem $=13.2$, J vic $=11.1,4.9, \mathrm{H}-2,6-\mathrm{pip}) ; 3.58$ and $3.61\left(2 \times \mathrm{dt}, 2 \times 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.2, \mathrm{~J}_{\mathrm{vic}}=5.4, \mathrm{H}-2,6-\mathrm{pip}\right) ; 3.80(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=11.8,2.6$, $\mathrm{bCH}_{2} \mathrm{O}-\mathrm{THP}$); 4.19 (ddt, $1 \mathrm{H}, \mathrm{J}=11.8,4.3,1.9, \mathrm{aCH}_{2} \mathrm{O}-\mathrm{THP}$); 4.28 and $4.35(2 \times \mathrm{d}, 2 \mathrm{H}$, $J_{\text {gem }}=15.2, \mathrm{CH}_{2} \mathrm{CO}$); $5.80(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.4,2.5, \mathrm{CHO}-\mathrm{THP}$); 8.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$); 8.92 (s, 1 H , $\mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.73($\left.\mathrm{CH}_{2}-\mathrm{THP}\right) ; 24.43\left(\mathrm{CH}_{2}-4\right.$-pip); $24.83\left(\mathrm{CH}_{2}\right.$-THP); 25.38 and $26.26\left(\mathrm{CH}_{2}-3,5\right.$-pip $) ; 31.83\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 38.59\left(\mathrm{CH}_{2} \mathrm{CO}\right) ; 42.94$ and 47.15 $\left(\mathrm{CH}_{2}-2,6\right.$-pip); 68.85 ($\left.\mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}\right) ; 81.98$ (CHO-THP); 133.15 (C-5); 142.12 (CH-8); 150.26 (C-4); 152.43 (CH-2); 156.31 (C-6); 166.47 (CO). IR (CCl_{4}): 2943, 2858, 1657, 1593, 1442, 1334, 1211, 1088. For $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 1 / 5 \mathrm{H}_{2} \mathrm{O}$ (333.0) calculated: C $61.32 \%, \mathrm{H} 7.08 \%, \mathrm{~N} 21.03 \%$; found: C 61.34\%, H 6.94\%, N 20.96\%.

6-[(Cyclopropylcarbamoyl)methyl]-9-tetrahydropyran-2-yl-9H-purine (10b). Prepared from ester $\mathbf{2 b}$ (0.5 mmol) and cyclopropylamine ($346 \mu \mathrm{l}, 5 \mathrm{mmol}$) as a white foam, yield 66%. MS (FAB): 624 (100, $2 \mathrm{M}+\mathrm{Na}$), 324 ($45, \mathrm{M}+\mathrm{Na}$), $302\left(10, \mathrm{M}+\mathrm{H}\right.$). HRMS (FAB): for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{NaO}_{2}$ calculated 324.1431 , found $324.1434 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.46-0.51$ and $0.70-0.76$ $\left(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, 2 \times \mathrm{CH}_{2}\right) ; 1.61-1.87$ and $2.01-2.19\left(2 \times \mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{THP}\right) ; 2.71(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}-\mathrm{N}$); 3.79 (dt, $1 \mathrm{H}, \mathrm{J}=11.6,2.7, \mathrm{bCH}_{2} \mathrm{O}-\mathrm{THP}$); 4.16 (ddt, $1 \mathrm{H}, \mathrm{J}=11.6,3.7,2.2$, $\mathrm{aCH}_{2} \mathrm{O}-\mathrm{THP}$); 4.14 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$); 5.80 (dd, $1 \mathrm{H}, \mathrm{J}=10.1,2.5, \mathrm{CHO}-\mathrm{THP}$); 7.5 (bs, 1 H ,

NH); 8.27 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$); 8.89 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 6.42\left(\mathrm{CH}_{2} \mathrm{CH}\right)$; $22.69\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 22.70(\mathrm{CHNH}) ; 24.80\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 31.76\left(\mathrm{CH}_{2}-\mathrm{THP}\right) ; 40.18\left(\mathrm{CH}_{2} \mathrm{CO}\right) ; 68.86$ ($\mathrm{CH}_{2} \mathrm{O}-\mathrm{THP}$); 82.08 (CHO-THP); 132.83 (C-5); 142.38 (CH-8); 150.40 (C-4); 152.09 (CH-2); 155.60 (C-6); 168.66 (CO). IR (CCI $)$: 3331, 2949, 2857, 1689, 1597, 1497, 1334, 1210, 1088.

6-[(M ethyl carbamoyl)methyl]-9-[2,3,5-tri-O-(tert-butyldimethylsilyl)- β-d-ribofuranosyl]-9H-purine (7d). Prepared from ester $\mathbf{2 d}$ ($1020 \mathrm{mg}, 1.5 \mathrm{mmol}$) and 33% solution of methylamine in EtOH ($1.75 \mathrm{ml}, 15 \mathrm{mmol}$) and additional ethanol (5 ml). Yield 66%, white foam. MS (FAB): 666 (25, M + 1), 192 (20), 93 (50), 73 (100). HRMS (FAB): for $\mathrm{C}_{31} \mathrm{H}_{60} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{3}$ calculated 666.3902, found 666.3926. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -0.23, $-0.03,0.10,0.11,0.14$ and $0.15\left(6 \times \mathrm{s}, 6 \times 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ; 0.79,0.94$ and $0.96\left(3 \times \mathrm{s}, 3 \times 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 2.83(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{J}_{\mathrm{CH} 3, \mathrm{NH}}=4.8, \mathrm{CH}_{3} \mathrm{~N}$); $3.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.5, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=2.6, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 4.03\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=\right.$ $11.5, \mathrm{~J}_{5^{\prime}, 4^{\prime}}=3.8, \mathrm{H}-5^{\prime} \mathrm{a}$); 4.16 (td, $1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 3^{\prime}}=3.9, \mathrm{~J}_{4^{\prime}, 5^{\prime}}=3.8,2.6, \mathrm{H}-4^{\prime}$); $4.20(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}-pur); 4.33 (t, $\left.1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=4.3, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.9, \mathrm{H}-3^{\prime}\right) ; 4.63\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=4.9, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.3, \mathrm{H}-2^{\prime}\right.$); 6.12 (d, $1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=4.9, \mathrm{H}-\mathrm{l}^{\prime}$); 7.45 (bs, $1 \mathrm{H}, \mathrm{NH}$); 8.47 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.90 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-5.39,-5.37,-5.05,-4.72,-4.68$ and $-4.39\left(\mathrm{CH}_{3} \mathrm{Si}\right) ; 17.83$, 18.06 and $18.53\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) ; ~ 25.62, ~ 25.82 \text { and } 26.08\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 26.38\left(\mathrm{CH}_{3} \mathrm{~N}\right) ; 40.09}\right.$ (CH_{2}-pur); $62.37\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 71.75\left(\mathrm{CH}-3^{\prime}\right) ; 76.06\left(\mathrm{CH}-2^{\prime}\right) ; 85.50\left(\mathrm{CH}-4^{\prime}\right) ; 88.36\left(\mathrm{CH}-1^{\prime}\right) ; 132.27$ (C-5); $143.54(\mathrm{CH}-8) ; 150.94(\mathrm{C}-4) ; 152.06(\mathrm{CH}-2) ; 155.66(\mathrm{C}-6) ; 168.05(\mathrm{CO}) . \operatorname{IR}\left(\mathrm{CCl}_{4}\right)$: 3354, 2931, 2859, 1686, 1597, 1463, 1255, 1149, 839. For $\mathrm{C}_{31} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{3}$ (666.8) calculated: C 55.90\%, H 8.93\%, N 10.51\%; found: C 55.69\%, H 9.00\%, N 10.22\%.

6-[(Dimethylcarbamoyl)methyl]-9-[2,3,5-tri-0-(tert-butyldimethylsilyl)- β-D-ribofuranosyl]9 H -purine ($\mathbf{8 d}$). Prepared from ester $\mathbf{2 d}(1020 \mathrm{mg}, 1.5 \mathrm{mmol})$ and 5.6 m solution of dimethylamine in $\mathrm{EtOH}(3 \mathrm{ml}, 16.8 \mathrm{mmol})$ and additional ethanol (3 ml). Yield 39%, white foam. MS (FAB): 680 (20, M + 1), 206 (25), 73 (100). HRMS (FAB): for $\mathrm{C}_{32} \mathrm{H}_{62} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{3}$ calculated 680.4058, found 680.4065. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-0.21,-0.03,0.10,0.11,0.13$ and $0.14\left(6 \times \mathrm{s}, 6 \times 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ; 0.80,0.94$ and $0.95\left(3 \times \mathrm{s}, 3 \times 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 3.01$ and 3.10 $\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ; 3.80\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.4, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=2.8, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 4.04\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=\right.$ $\left.11.4, \mathrm{~J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=3.9, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 4.15\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 3^{\prime}}=4.2, \mathrm{~J}_{4^{\prime}, 5^{\prime}}=3.9,2.8, \mathrm{H}-4^{\prime}\right) ; 4.31$ and $4.34(2 \times \mathrm{d}$, $2 \mathrm{H}, \mathrm{J}_{\text {gem }}=15.5, \mathrm{CH}_{2}$-pur); 4.34 (t, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=\mathrm{J}_{3^{\prime}, 4^{\prime}}=4.2, \mathrm{H}-3^{\prime}$); 4.66 ($\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=4.8$, $\left.J_{2^{\prime}, 3^{\prime}}=4.2, \mathrm{H}-2^{\prime}\right) ; 6.11\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=4.8, \mathrm{H}-1^{\prime}\right) ; 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -5.36, $-5.01,-4.76,-4.73$ and $-4.38\left(\mathrm{CH}_{3} \mathrm{Si}\right) ; 17.83,18.06$ and $18.54\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 25.64,25.82$ and $26.09\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 35.60$ and $37.72\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\right) ; 38.52$ $\left(\mathrm{CH}_{2}\right.$-pur); $62.32\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 71.62\left(\mathrm{CH}-3^{\prime}\right) ; 75.78\left(\mathrm{CH}-2^{\prime}\right) ; 85.25\left(\mathrm{CH}-4^{\prime}\right) ; 88.45\left(\mathrm{CH}-1^{\prime}\right) ; 133.62$ (C-5); 143.26 (CH-8); 150.79 (C-4); $152.37(\mathrm{CH}-2) ; 155.93(\mathrm{C}-6) ; 168.41(\mathrm{CO}) . \operatorname{IR}\left(\mathrm{CCl}_{4}\right):$ 2956, 2930, 2859, 1664, 1593, 1472, 1392, 1333, 1295, 1148, 839. For $\mathrm{C}_{32} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}_{3}$ (679.4) calculated: C 56.51\%, H 9.04\%, N 10.30\%; found: C 56.65\%, H 9.04\%, N 9.78\%.

6-[(Piperidine-1-carbonyl)methyl]-9-[2,3,5-tri-O-(tert-butyldimethylsilyl)- β-D-ribofuranosyl]9 H -purine (9d). Prepared from ester 2d (1.5 mmol) and piperidine (15 mmol) as a white foam, yield 49\%. MS (FAB): 720 (75, M + H), 288 (100). HRMS (FAB): for $\mathrm{C}_{35} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{NaO}_{5} \mathrm{Si}_{3}$ calculated 742.4185, found 742.4188. IR (CCI_{4}): 2931, 2859, 1655, 1592, 1472, 1256.

Mesylation and Nucleophilic Substitution of Purines 6a, 6d. General Procedure
To a stirred solution of purine $\mathbf{6 a}$ ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), methanesulfonic anhydride (104 mg , 0.6 mmol) and DMAP (3 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml}) \mathrm{Et}_{3} \mathrm{~N}(105 \mu \mathrm{l}, 0.75 \mathrm{mmol})$ was added. After finishing the reaction (0.5 h), the reaction mixture was chromatographed on a silica gel column $\left(\mathrm{CHCl}_{3}\right)$ and the eluate was evaporated at room temperature. Crude product was
dilluted with $\mathrm{MeOH}(25 \mathrm{ml}), 1 \mathrm{~m} \mathrm{MeONa}$ in MeOH ($0.75 \mathrm{ml}, 0.75 \mathrm{mmol}$) was added, the mixture was stirred overnight and then concentrated. Purine 11a was obtained after purification on silica gel column (hexanes/ethyl acetate), yield 76%.

9-Benzyl-6-(2-methoxyethyl)-9H-purine (11a). Yield 76\%, oil. ${ }^{1} \mathrm{H}$ NMR spectra were in accord with the previously published data ${ }^{27}$.

9-Benzyl-6-[2-(dimethylamino)ethyl]-9H-purine (12a). Prepared from 2 m MeNH 2 in THF $(0.5 \mathrm{ml}, 1 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{ml})$. Yield 88%, white crystals. ${ }^{1} \mathrm{H}$ NMR spectra were in accord with previously published data ${ }^{27}$.

9-Benzyl-6-[2-(methylsulfanyl)ethyl]purine (13a). Prepared from MeSNa ($35 \mathrm{mg}, 0.5 \mathrm{mmol}$) in ethanol (15 ml), yield 60%, yellowish crystals. ${ }^{1} \mathrm{H}$ NMR spectra were in accord with previously published data ${ }^{27}$.

6-(2-M ethoxyethyl)-9-[2,3,5-tri-0-(tert-butyldimethylsilyl)- β-d-ribofuranosyl]-9H-purine (11d). Prepared from purine 6d ($320 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1 m MeONa in $\mathrm{MeOH}(0.75 \mathrm{ml}$, 0.75 mmol) as a yellowish oil, yield 63%. MS (ESI): 675 ($55, \mathrm{M}+\mathrm{Na}$), 653 ($100, \mathrm{M}+\mathrm{H}$). HRMS (ESI): for $\mathrm{C}_{31} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{3}$ calculated 653.3944, found 653.3945. ${ }^{1} \mathrm{H} \mathrm{NMR}(499.8 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right):-0.27,-0.05,0.109,0.113,0.13$ and $0.14\left(6 \times \mathrm{s}, 6 \times 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) ; 0.78,0.94$ and 0.95 $\left(3 \times \mathrm{s}, 3 \times 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.49\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\text {vic }}=6.6, \mathrm{CH}_{2}-\mathrm{pur}\right) ; 3.80$ (dd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.4, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=2.9, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 3.97\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\text {vic }}=6.6, \mathrm{CH}_{2} \mathrm{O}\right) ; 4.03\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.4\right.$, $\left.\mathrm{J}_{5^{\prime}, 4^{\prime}}=4.0, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 4.15\left(\mathrm{ddd}, 3 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=4.0,2.9, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.6, \mathrm{H}-4^{\prime}\right) ; 4.33\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=4.3\right.$, $\mathrm{J}_{3^{\prime}, 4^{\prime}}=3.6, \mathrm{H}-3^{\prime}$); 4.70 (dd, $1 \mathrm{H}, \mathrm{J}_{2^{\prime}, 1^{\prime}}=5.3, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.3, \mathrm{H}-2^{\prime}$); $6.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=5.3, \mathrm{H}-1^{\prime}\right)$; 8.37 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.88 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $-5.38,-5.37,-5.14$, $-4.71,-4.69$ and $-4.41\left(\mathrm{CH}_{3} \mathrm{Si}\right) ; 17.82,18.08$ and $18.53\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) ; 25.62,25.83 \text { and } 26.08}\right.$ $\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) ; 33.52\left(\mathrm{CH}_{2}\right.$-pur); $58.66\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 62.51\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 70.51\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 71.95\left(\mathrm{CH}-3^{\prime}\right)$; 75.78 (CH-2'); 85.57 (CH-4'); 88.23 (CH-1'); 133.69 (C-5); 142.90 (CH-8); 150.59 (C-4); $152.30(\mathrm{CH}-2) ; 159.82(\mathrm{C}-6) . \operatorname{IR}\left(\mathrm{CCl}_{4}\right): 2956,2931,2859,1597,1472,1333,1257,1113$.

Deprotection of THP-Protected Purines $\mathbf{2 b}, \mathbf{6 b}, \mathbf{7 b}, \mathbf{8 b}, \mathbf{9 b}, \mathbf{1 0 b}$. General Procedure
To a stirred solution of purine $\mathbf{2 b}(290 \mathrm{mg}, 1 \mathrm{mmol})$ in 96% EtOH (20 ml) was added a catalytic amount of Dowex $50\left(\mathrm{H}^{+}\right.$form). The reaction was stirred at $70^{\circ} \mathrm{C}$ for 3 h , filtered, the resin was washed with ethanolic ammonia and the filtrate was evaporated to dryness. Crude product was chromatographed (chloroform/methanol) to give a white solid. Purine base $\mathbf{2 g}$ was obtained by crystallization from methanol/propan-2-ol/heptane as white crystals, yield 192 mg (93\%).

6-[2-(Ethoxycarbonyl)methyl]-9H-purine (2g). White crystals, m.p. 133-135 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{30} 135{ }^{\circ} \mathrm{C}$). MS (FAB): 207 (45, M +1), 73 (100). HRMS (FAB): for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{2}$ calculated 207.0882, found 207.0880. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}_{\text {vic }}=7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 4.11(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{J}_{\text {vic }}=7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}$); 4.16 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 8.58 (bs, $1 \mathrm{H}, \mathrm{H}-8$); 8.82 (s, $1 \mathrm{H}, \mathrm{H}-2$); 13.46 (bs, $1 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR (125.7 MHz, DMSO-d $\left.{ }_{6}+\mathrm{DCl}\right): 14.56\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 39.20\left(\mathrm{CH}_{2}-\right.$ pur $) ; 62.24$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 127.55(\mathrm{C}-5) ; 148.59(\mathrm{C}-6) ; 149.43(\mathrm{CH}-2) ; 149.58(\mathrm{CH}-8) ; 154.98(\mathrm{C}-4) ; 167.83$ (CO). IR (KBr): 2985, 2708, 1723, 1613, 1403, 1325, 1197. For $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 1 / 6 \mathrm{H}_{2} \mathrm{O}$ (209.2) calculated: C 51.67\%, H 4.98\%, N 26.78\%; found: C 51.99\%, H 4.71\%, N 26.65\%.

6 -(2-Hydroxyethyl)-9H-purine ($\mathbf{6 g}$). Yield 75%, white crystals, m.p. $170-172{ }^{\circ} \mathrm{C}$. MS (FAB): 165 (75, M +1), 102 (100). HRMS (FAB): for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}$ calculated 165.0776, found 165.0771. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}+\mathrm{DCI}$): $3.45\left(\mathrm{t}, 2 \mathrm{H}\right.$, J vic $\left.=6.1, \mathrm{CH}_{2}-\mathrm{pur}\right) ; 3.92\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\text {vic }}=6.1\right.$, $\mathrm{CH}_{2} \mathrm{O}$); 9.10 (s, $1 \mathrm{H}, \mathrm{H}-8$); 9.22 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}+\mathrm{DCl}$): 34.28
$\left(\mathrm{CH}_{2}\right.$-pur); $59.64\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 129.23(\mathrm{C}-5) ; 146.74(\mathrm{CH}-2) ; 150.87(\mathrm{CH}-8) ; 153.69(\mathrm{C}-6) ; 156.33$ (C-4). IR (KBr): 3392, 3262, 2824, 1619, 1569, 1379, 1239, 1042.

6-[(M ethylcarbamoyl)methyl]-9H-purine (7g). Yield 64\%, white solid, m.p. 228-231 ${ }^{\circ} \mathrm{C}$. MS (ESI): $214(100, M+N a), 192(20, M+H)$. HRMS (ESI): for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}$ calculated 192.0880, found 192.0878. ${ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $2.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.7, \mathrm{CH}_{3} \mathrm{~N}\right.$); 3.94 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 8.10 (bq, $1 \mathrm{H}, \mathrm{J}=4.7, \mathrm{NH}$); 8.55 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.79 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (150.9 MHz, DM SO-d $\left.{ }_{6}\right): 26.00\left(\mathrm{CH}_{3} \mathrm{~N}\right) ; 40.61\left(\mathrm{CH}_{2}\right.$-pur); $129.70(\mathrm{C}-5) ; 145.56$ (CH-8); 151.85 (CH-2); 153.42 (C-6); 155.00 (C-4); 168.36 (CO). IR (KBr): 3244, 3073, 2828, 1643, 1622, 1563, 1379, 1333. For $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O} \cdot 3 / 5 \mathrm{H}_{2} \mathrm{O}$ (202.0) calculated: C $47.57 \%, \mathrm{H} 5.09 \%$, N 34.67\%; found: C 47.87%, H 4.60%, N 34.33%.

6-[(Dimethylcarbamoyl)methyl]-9H-purine (8g). Yield 58\%, white solid. MS (ESI): 432 (100, $2 \mathrm{M}+\mathrm{Na}$), $228(75, \mathrm{M}+\mathrm{Na}), 206(60, \mathrm{M}+\mathrm{H}) . \mathrm{HRMS}(E S I):$ for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}$ calculated 206.1036, found 206.1036. ${ }^{1} \mathrm{H}$ NMR (500.0 MHz, DMSO-d $_{6}$): 2.85 and $3.10(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{~N}$); 4.17 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 8.55 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.79 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (125.7 M Hz, DMSO-d ${ }_{6}$): 35.22 and $37.54\left(\mathrm{CH}_{3} \mathrm{~N}\right)$; $39.20\left(\mathrm{CH}_{2}\right.$-pur); $129.50(\mathrm{C}-5) ; 145.44(\mathrm{CH}-8) ; 151.85$ (CH-2); 153.71 (C-6); 154.92 (C-4); 168.36 (CO). IR (KBr): 3405, 3112, 2968, 1648, 1601, 1395, 1325.

6-[(Piperidine-1-carbonyl)methyl]-9H-purine (9g). Yield 75\%, white solid. MS (ESI): 513 (100, $2 \mathrm{M}+\mathrm{Na}$), $268\left(65, \mathrm{M}+\mathrm{Na}\right.$), $246(15, \mathrm{M}+\mathrm{H})$. HRMS (ESI): for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}$ calculated 246.1349, found $246.1349 .{ }^{1} \mathrm{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 1.43, 1.47 and $1.58(3 \times \mathrm{m}, 3 \times$ $2 \mathrm{H}, \mathrm{CH}_{2}$-pip); 3.42 and $3.51\left(\mathrm{CH}_{2} \mathrm{~N}\right.$-pip); 4.17 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 8.55 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.79 (s, $1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 24.22, 25.51 and $26.18\left(\mathrm{CH}_{2}-\mathrm{pip}\right) ; 38.58$ (CH_{2}-pur); 42.42 and $46.76\left(\mathrm{CH}_{2} \mathrm{~N}\right.$-pip); $129.68(\mathrm{C}-5) ; 145.49(\mathrm{CH}-8) ; 151.84(\mathrm{CH}-2) ; 153.80$ (C-6); 154.70 (C-4); 166.52 (CO). IR (KBr): 3422, 2936, 1641, 1597, 1442, 1324, 1225.

6-[(Cyclopropylcarbamoyl)methyl]-9H-purine (10g). Yield 67\%, white solid. MS (ESI): 240 (100, $\mathrm{M}+\mathrm{Na}$), $218(30, \mathrm{M}+\mathrm{H})$. HRMS (ESI): for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}$ calculated 218.1036, found 218.1029. ${ }^{1} \mathrm{H}$ NMR (500.0 MHz, DMSO-d ${ }_{6}$): 0.43 and $0.62\left(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-cycloprop); 2.63 (tq, $1 \mathrm{H}, \mathrm{J}=7.2,4.2$, CH-cycloprop); 3.89 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 8.32 (bd, $1 \mathrm{H}, \mathrm{J}=4.2, \mathrm{NH}$); 8.55 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.79 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{DM} \mathrm{SO}-\mathrm{d}_{6}$): 5.93 (CH_{2}-cycloprop); 22.77 (CH-cycloprop); 40.57 (CH_{2}-pur); 129.63 (C-5); 145.62 (CH-8); 151.86 (CH-2); 153.48 (C-6); 154.88 (C-4); 169.11 (CO). IR (KBr): 3303, 3108, 2813, 1642, 1604, 1544, 1331, 1237. For $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ (217.2) calculated: C 55.29%, H 5.10\%, $\mathrm{N} 32.24 \%$; found: C $55.09 \%, \mathrm{H} 5.14 \%$, N 31.74\%.

Deprotection of Purine Nucleosides 2d, 2f, 6d, 6f and 7d, 8d, 9d. General Procedure
$\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(407 \mu \mathrm{l}, 2.5 \mathrm{mmol})$ was added to the solution of $\mathbf{2 d}(340 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF (1.5 ml) and the reaction mixture was vigorously stirred at room temperature overnight. Solvents were evaporated in vacuo and the residue was chromatographed on silica gel column (ethyl acetate/methanol). Product was lyophilized to give 163 mg (96\%) of $\mathbf{2 h}$ as a white solid.

6-[(2-Ethoxycarbonyl)methyl]-9-(β-d-ribofuranosyl)-9H-purine (2h). MS (FAB): 339.1 (70, M + 1), 207 (95), 93 (100). HRMS (FAB): for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{6}$ calculated 339.1305, found 339.1302. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $1.18\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$); 3.37 (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0$, $\left.J_{5^{\prime} \mathrm{b}, \mathrm{OH}}=6.0, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=4.1, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 3.69$ (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0, \mathrm{~J}_{5^{\prime} \mathrm{a}, \mathrm{OH}}=5.2, \mathrm{~J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=4.2, \mathrm{H}-5^{\prime} \mathrm{a}\right)$; $3.98\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=4.2,4.1, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.4, \mathrm{H}-4^{\prime}\right) ; 4.11\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 4.18(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}-pur); 4.19 (td, $\left.1 \mathrm{H}, \mathrm{J}_{3^{\prime}, \mathrm{OH}}=5.0, \mathrm{~J}_{3^{\prime}, 2^{\prime}}=4.9, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.4, \mathrm{H}-3^{\prime}\right) ; 4.66\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{2^{\prime}, \mathrm{OH}}=6.0\right.$, $\left.\mathrm{J}_{2^{\prime}, 1^{\prime}}=5.8, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.9, \mathrm{H}-2^{\prime}\right) ; 5.11\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 5^{\prime}}=6.0,5.2, \mathrm{OH}-5^{\prime}\right) ; 5.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 3^{\prime}}=5.0\right.$,
$\mathrm{OH}-3^{\prime}$); 5.57 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 2^{\prime}}=6.0, \mathrm{OH}-2^{\prime}$); 6.04 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=5.8, \mathrm{H}-1^{\prime}$); 8.82 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$); 8.88 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (100.6 MHz , DM SO-d) : $14.13\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 38.82\left(\mathrm{CH}_{2}\right.$-pur); 60.91 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 61.48\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 70.55\left(\mathrm{CH}-3^{\prime}\right) ; 73.80\left(\mathrm{CH}-2^{\prime}\right) ; 85.97\left(\mathrm{CH}-4^{\prime}\right) ; 87.83\left(\mathrm{CH}-1^{\prime}\right) ; 133.16$ (C-5); 145.06 (CH-8); 150.93 (C-4); 151.99 (CH-2); 154.47 (C-6); $169.12(\mathrm{CO}) . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$: 3326, 2988, 2933, 1734, 1603, 1500, 1336, 1248, 1189, 1084. [$\alpha]_{D}{ }^{20}-40.8$ (c 2.62, $\mathrm{H}_{2} \mathrm{O}$). For $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{6} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (347.3) calculated: C $48.41 \%, \mathrm{H} 5.51 \%, \mathrm{~N} 16.13 \%$; found: $\mathrm{C} 48.39 \%$, H 5.48\%, N 15.83\%.

9-(2-Deoxy- β-D-erythro-pentofuranosyl)-6-[(2-ethoxycarbonyl)methyl]-9H-purine (2i). Prepared from purine $\mathbf{2 f}(550 \mathrm{mg}, 1 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(570 \mu \mathrm{l}, 3.5 \mathrm{mmol})$ in THF (3 ml). Product was lyophilized to give 226 mg (69\%) of $\mathbf{2 i}$ as a yellow oil. MS (FAB): 667 (100), 345 (80, $\mathrm{M}+\mathrm{Na}$), $323(\mathrm{M}+\mathrm{H})$. HRMS (FAB): for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{NaO}_{5}$ calculated 345.1175, found 345.1166. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): 1.17 (t, $3 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}$); 2.36 (ddd, 1 H , $\left.\mathrm{J}_{\text {gem }}=13.3, \mathrm{~J}_{2^{\prime} b, 1^{\prime}}=6.3, \mathrm{~J}_{2^{\prime} b, 3^{\prime}}=3.5, \mathrm{H}-2^{\prime} \mathrm{b}\right) ; 2.81$ (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.3, \mathrm{~J}_{2^{\prime} \mathrm{a}, 1^{\prime}}=7.3, \mathrm{~J}_{2^{\prime} \mathrm{a}, 3^{\prime}}=$ $5.9, \mathrm{H}-2^{\prime} \mathrm{a}$); 3.53 (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.7, \mathrm{~J}_{5^{\prime} \mathrm{b}, \mathrm{OH}}=5.6, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=4.6, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 3.62\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=\right.$ $11.7, \mathrm{~J}_{5^{\prime} \mathrm{a}, \mathrm{OH}}=5.6, \mathrm{~J}_{5^{\prime}, 4^{\prime}}=4.7, \mathrm{H}-5^{\prime} \mathrm{a}$); 3.89 (td, $1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=4.7,4.6, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.0, \mathrm{H}-4^{\prime}$); 4.11 (q, $2 \mathrm{H}, \mathrm{J}=7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}$); 4.17 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 4.45 (dq, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=5.9,3.5, \mathrm{~J}_{3^{\prime}, \mathrm{OH}}=4.2$, $\left.\mathrm{J}_{3^{\prime}, 4^{\prime}}=3.0, \mathrm{H}-3^{\prime}\right) ; 4.99\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 5^{\prime}}=5.6, \mathrm{OH}-5^{\prime}\right) ; 5.37\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 3^{\prime}}=4.2, \mathrm{OH}-3^{\prime}\right) ; 6.47$ (t, $1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=7.3,6.3, \mathrm{H}-\mathrm{I}^{\prime}$); $8.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C} \mathrm{NMR}(100.6 \mathrm{MHz}$, DM SO-d $)_{6}$: $14.22\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 38.80\left(\mathrm{CH}_{2}\right.$-pur); $39.36\left(\mathrm{CH}_{2}-2^{\prime}\right) ; 60.89\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 61.75$ $\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 70.84\left(\mathrm{CH}-3^{\prime}\right) ; 84.00\left(\mathrm{CH}-1^{\prime}\right) ; 88.21\left(\mathrm{CH}-4^{\prime}\right) ; 133.16$ (C-5); 144.98 (CH-8); 150.63 (C-4); 151.90 (CH-2); 154.34 (C-6); 169.13 (CO). IR (KBr): 3326, 3007, 1735, 1602, 1336, 1204, 1104. For $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}$ (328.3) calculated: C $51.21 \%, \mathrm{H} 5.73 \%, \mathrm{~N} 17.06 \%$; found: C 51.29\%, H 5.57\%, N 16.67\%.

6-(2-Hydroxyethyl)-9-(β-d-ribofuranosyl)-9H-purine (6h). Prepared from purine 6d (320 mg, $0.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(407 \mu \mathrm{l}, 2.5 \mathrm{mmol})$ in THF (1.5 ml). Product was lyophilized to give 136 mg (92\%) of $\mathbf{6 h}$ as a white solid. MS (FAB): 297 (20, M + 1), 241 (45), 185 (40), 93 (100). HRMS (FAB): for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{5}$ calculated 297.1198, found 297.1206. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, DM SO-d ${ }_{6}$): 3.25 (t, $2 \mathrm{H}, \mathrm{J}_{\text {vic }}=6.8, \mathrm{CH}_{2}$-pur); 3.57 (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0, \mathrm{~J}_{5^{\prime} \mathrm{b}, \mathrm{OH}}=6.1, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=$ $4.1, \mathrm{H}-5^{\prime} \mathrm{b}$); 3.68 (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0, \mathrm{~J}_{5^{\prime} \mathrm{a}, \mathrm{OH}}=4.9, \mathrm{~J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=4.3, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 3.92$ (td, $2 \mathrm{H}, \mathrm{J}_{\text {vic }}=$ $\left.6.8, \mathrm{~J}_{\mathrm{OH}}=5.6, \mathrm{CH}_{2}-\mathrm{O}\right) ; 3.98\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=3.9,3.9, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.7, \mathrm{H}-4^{\prime}\right) ; 4.18\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{3^{\prime}, \mathrm{OH}}=\right.$ $\left.4.9, \mathrm{~J}_{3^{\prime}, 2^{\prime}}=4.9, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.7, \mathrm{H}-3^{\prime}\right) ; 4.64\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{2^{\prime}, \mathrm{OH}}=6.1, \mathrm{~J}_{2^{\prime}, 1^{\prime}}=5.8, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.9, \mathrm{H}-2^{\prime}\right) ; 4.78(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=5.6, \mathrm{OH}$); $5.14\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 5^{\prime}}=5.9,5.3, \mathrm{OH}-5^{\prime}\right) ; 5.26\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 3^{\prime}}=4.9, \mathrm{OH}-3^{\prime}\right) ; 5.54$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 2^{\prime}}=6.1, \mathrm{OH}-2^{\prime}$); $6.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=5.8, \mathrm{H}-1^{\prime}\right) ; 8.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) ; 8.83(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR (100.6 M Hz, DMSO-d $)$: $36.46\left(\mathrm{CH}_{2}-\right.$ pur $) ; 59.38\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 61.30\left(\mathrm{CH}_{2}-5^{\prime}\right)$; 70.35 (CH-3'); 73.56 (CH-2'); 85.69 (CH-4'); 87.55 (CH-1'); 133.08 (C-5); 144.08 (CH-8); 150.21 (C-4); 151.67 (CH-2); 159.72 (C-6). IR (KBr): 3413, 2926, 1603, 1407, 1335, 1212, 1052. $[\alpha]_{D}{ }^{20}-44.4\left(\mathrm{c} 3.19, \mathrm{H}_{2} \mathrm{O}\right.$). For $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{5} \cdot 3 / 4 \mathrm{H}_{2} \mathrm{O}$ (309.8) calculated: C $46.52 \%, \mathrm{H} 5.69 \%$, N 18.09\%; found: C 46.63%, H 5.73\%, N 17.63\%.

9-(2-Deoxy- β-d-erythro-pentofuranosyl)-6-(2-hydroxyethyl)-9H-purine ($\mathbf{6 i}$). Prepared from purine $\mathbf{6 f}(360 \mathrm{mg}, 0.7 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(400 \mu \mathrm{l}, 2.5 \mathrm{mmol})$ in THF (3 ml). Product was lyophilized to give 135 mg (69%) of $\mathbf{6 i}$ as a white foam. MS (FAB): 281 (15, M +1), 154 (100), 136 (85). HRMS (FAB): for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{4}$ calculated 281.1249, found 281.1245. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$): 2.34 (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.3, \mathrm{~J}_{2^{\prime} \mathrm{b}, 1^{\prime}}=6.3, \mathrm{~J}_{2^{\prime} \mathrm{b}, 3^{\prime}}=3.4, \mathrm{H}-2^{\prime} \mathrm{b}$); 2.79 (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=13.3, \mathrm{~J}_{2^{\prime} \mathrm{a}, 1^{\prime}}=7.4, \mathrm{~J}_{2^{\prime} \mathrm{a}, 3^{\prime}}=5.9, \mathrm{H}-2^{\prime} \mathrm{a}$); $3.24\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\text {vic }}=6.8, \mathrm{CH}_{2}\right.$-pur); 3.52 (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.7, \mathrm{~J}_{5^{\prime} \mathrm{b}, \mathrm{OH}}=5.7, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=4.7, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 3.62$ (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=11.8, \mathrm{~J}_{5^{\prime} \mathrm{a}, \mathrm{OH}}=5.4$, $\left.\mathrm{J}_{5^{\prime}, 4^{\prime}}=4.7, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 3.89\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=4.7,4.6, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=2.7, \mathrm{H}-4^{\prime}\right) ; 3.92\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{vic}}=6.8\right.$, $\left.\mathrm{J}_{\mathrm{OH}}=5.6, \mathrm{CH}_{2}-\mathrm{O}\right) ; 4.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{J}_{3^{\prime}, 2^{\prime}}=5.9,3.4, \mathrm{~J}_{3^{\prime}, \mathrm{OH}}=4.2, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=2.7, \mathrm{H}-3^{\prime}\right) ; 4.76(\mathrm{bt}, 1 \mathrm{H}$,
$\mathrm{J}=5.6, \mathrm{OH}$); 5.00 (t, $1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 5^{\prime}}=5.6, \mathrm{OH}-5^{\prime}$); 5.36 (d, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 3^{\prime}}=4.2, \mathrm{OH}-3^{\prime}\right) ; 6.46$ (t, 1 H , $\left.\mathrm{J}_{1^{\prime}, 2^{\prime}}=7.4,6.3, \mathrm{H}-1^{\prime}\right) ; 8.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$; $8.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $36.41\left(\mathrm{CH}_{2}\right.$-pur); $39.09\left(\mathrm{CH}_{2}-2^{\prime}\right) ; 59.32\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 61.52\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 70.61\left(\mathrm{CH}-3^{\prime}\right) ; 83.61$ (CH-1'); 87.89 (CH-4'); 133.02 (C-5); 143.91 (CH-8); 149.87 (C-4); 151.53 (CH-2); 159.52 (C-6). IR (KBr): 3401, 2928, 1601, 1400, 1335, 1213, 1055. [$\alpha]_{D}{ }^{20}-15.8$ (c 2.72, $\mathrm{H}_{2} \mathrm{O}$). For $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ (289.2) calculated: C $49.82 \%, \mathrm{H} 5.92 \%, \mathrm{~N}$ 19.37\%; found: C 50.12%, H 5.76\%, N 19.14\%.

6-[(M ethylcarbamoyl)methyl]-9-(β-d-ribofuranosyl)-9H-purine (7h). Prepared from purine 7d ($500 \mathrm{mg}, 0.75 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(612 \mu \mathrm{l}, 3.75 \mathrm{mmol}$) in THF (2.5 ml). Product was lyophilized to give 213 mg (88%) of 7 h as a white solid. MS (FAB): 324 (10, M + 1), 192 (100), 161 (60), 135 (55). HRMS (FAB): for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{5}$ calculated 324.1308, found 324.1316. ${ }^{1} \mathrm{H}$ NMR ($499.8 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $2.60\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=4.7, \mathrm{CH}_{3} \mathrm{~N}\right.$); 3.57 (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0$, $\left.J_{5^{\prime} \mathrm{b}, \mathrm{OH}}=6.1, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=4.1, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 3.69$ (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0, \mathrm{~J}_{5^{\prime} \mathrm{a}, \mathrm{OH}}=5.2, \mathrm{~J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=4.1, \mathrm{H}-5^{\prime} \mathrm{a}\right)$; 3.96 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 3.98 (td, $1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=4.1, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.6, \mathrm{H}-4^{\prime}$); 4.19 (td, $1 \mathrm{H}, \mathrm{J}_{3^{\prime}, \mathrm{OH}}=\mathrm{J}_{3^{\prime}, 2^{\prime}}=$ $4.9, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.6, \mathrm{H}-3^{\prime}$); 4.65 (ddd, $1 \mathrm{H}, \mathrm{J}_{2^{\prime}, \text { OH }}=6.1, \mathrm{~J}_{2^{\prime}, 1^{\prime}}=5.8, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.9, \mathrm{H}-2^{\prime}$); 5.13 (dd, 1 H , $\left.\mathrm{J}_{\mathrm{OH}, 5^{\prime}}=6.1,5.2, \mathrm{OH}-5^{\prime}\right) ; 5.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 3^{\prime}}=4.9, \mathrm{OH}-3^{\prime}\right) ; 5.56$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 2^{\prime}}=6.1, \mathrm{OH}-2^{\prime}$); 6.03 (d, $1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=5.8, \mathrm{H}-1^{\prime}$); 8.08 (bq, $1 \mathrm{H}, \mathrm{J}=4.7, \mathrm{NH}$); 8.78 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.84 (s, 1 H , $\mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 25.99\left(\mathrm{CH}_{3} \mathrm{~N}\right) ; 38.87\left(\mathrm{CH}_{2}\right.$-pur); $61.53\left(\mathrm{CH}_{2}-5^{\prime}\right)$; 70.60 (CH-3'); 73.82 (CH-2'); 85.96 (CH-4'); 87.86 (CH-1'); 133.47 (C-5); 144.75 (CH-8); 150.79 (C-4); 151.91 (CH-2); 156.36 (C-6); 168.23 (CO). IR (CCI_{4}): 3317, 2928, 1657, 1602, 1409, 1336, 1210, 1154. $[\alpha]_{D}{ }^{20}$-35.2 (c 3.29, $\mathrm{H}_{2} \mathrm{O}$).

6-[(Dimethylcarbamoyl)methyl]-9-(β-D-ribofuranosyl)-9H-purine (8h). Prepared from purine 8d ($340 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(408 \mu \mathrm{l}, 2.5 \mathrm{mmol}$) in THF (3 ml). Product was lyophilized to give 153 mg (91\%) of $\mathbf{8 h}$ as white solid. MS (FAB): 338 ($30, \mathrm{M}+1$), 241 (85), 157 (50), 93 (100). HRMS (FAB): for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{5}$ calculated 338.1464, found 338.1474 . ${ }^{1} \mathrm{H}$ NMR (499.8 M Hz, DM SO-d $)$: 2.85 and $3.11\left(2 \times \mathrm{s}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~N}\right) ; 3.57\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}_{\text {gem }}=\right.$ $\left.12.1, \mathrm{~J}_{5^{\prime} \mathrm{b}, \mathrm{OH}}=6.0, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=4.1, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 3.69$ (ddd, $1 \mathrm{H}, \mathrm{J}_{\mathrm{gem}}=12.1, \mathrm{~J}_{5^{\prime} \mathrm{a}, \mathrm{OH}}=5.2, \mathrm{~J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=4.1$, $\left.\mathrm{H}-5^{\prime} \mathrm{a}\right) ; 3.98$ (td, $\left.1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=4.1, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.6, \mathrm{H}-4^{\prime}\right) ; 4.19\left(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}_{3^{\prime}, \mathrm{OH}}=\mathrm{J}_{3^{\prime}, 2^{\prime}}=4.9, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.6\right.$, $\mathrm{H}-3^{\prime}$); 4.21 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$-pur); 4.66 (ddd, $1 \mathrm{H}, \mathrm{J}_{2^{\prime}, \mathrm{OH}}=6.1, \mathrm{~J}_{2^{\prime}, 1^{\prime}}=5.8, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.9, \mathrm{H}-2^{\prime}$); 5.12 (dd, $\left.1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 5^{\prime}}=6.0,5.2, \mathrm{OH}-5^{\prime}\right) ; 5.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 3^{\prime}}=4.9, \mathrm{OH}-3^{\prime}\right) ; 5.56\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 2^{\prime}}=6.1\right.$, $\mathrm{OH}-2^{\prime}$); 6.03 (d, $1 \mathrm{H}, \mathrm{J}_{1^{\prime}, 2^{\prime}}=5.8, \mathrm{H}-1^{\prime}$); 8.77 (s, $1 \mathrm{H}, \mathrm{H}-8$); 8.84 (s, $1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right): 35.17$ and $37.52\left(\mathrm{CH}_{3} \mathrm{~N}\right) ; 38.06\left(\mathrm{CH}_{2}\right.$-pur); $61.55\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 70.61$ (CH-3'); 73.77 (CH-2'); 85.98 (CH-4'); $87.84\left(\mathrm{CH}-1^{\prime}\right) ; 133.43(\mathrm{C}-5) ; 144.67(\mathrm{CH}-8) ; 150.67$ (C-4); 151.87 (CH-2); 156.69 (C-6); 168.23 (CO). IR (CCl_{4}): 3409, 2927, 1637, 1600, 1403, 1336, 1211, 1056. $[\alpha]_{D}{ }^{20}-40.0$ (c 3.86, $\mathrm{H}_{2} \mathrm{O}$).

6-[(Piperidine1-carbonyl)methyl]-9-(β-d-ribofuranosyl)-9H-purine (9h). Prepared from purine 9d ($525 \mathrm{mg}, 0.73 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(596 \mu \mathrm{l}, 3.65 \mathrm{mmol}$) in THF (3 ml). Product was lyophilized to give 270 mg (98%) of 9 h as a white solid. MS (FAB): 400 ($100, \mathrm{M}+\mathrm{Na}$), 378 ($20, \mathrm{M}+\mathrm{H}$). HRMS (FAB): for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{5}$ calculated 378.1772, found 378.1770. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$): 1.42 and $1.49(2 \times \mathrm{m}, 2 \times 2 \mathrm{H}, \mathrm{H}-3,5-\mathrm{pip}$); 1.57 (m, $2 \mathrm{H}, \mathrm{H}-4-\mathrm{pip}$); 3.43 and $4.52(2 \times \mathrm{t}, 2 \times 2 \mathrm{H}, \mathrm{J}=5.4, \mathrm{H}-2,6-\mathrm{pip}) ; 3.58$ (ddd, $1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0, \mathrm{~J}_{5^{\prime} \mathrm{b}, \mathrm{OH}}=5.9, \mathrm{~J}_{5^{\prime} \mathrm{b}, 4^{\prime}}=$ $\left.4.2, \mathrm{H}-5^{\prime} \mathrm{b}\right) ; 3.67$ (ddd, $\left.1 \mathrm{H}, \mathrm{J}_{\text {gem }}=12.0, \mathrm{~J}_{5^{\prime} \mathrm{a}, \mathrm{OH}}=5.2, \mathrm{~J}_{5^{\prime} \mathrm{a}, 4^{\prime}}=4.2, \mathrm{H}-5^{\prime} \mathrm{a}\right) ; 3.98$ (q, $1 \mathrm{H}, \mathrm{J}_{4^{\prime}, 5^{\prime}}=$ $\left.4.2,4.1, \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.6, \mathrm{H}-4^{\prime}\right) ; 4.18$ (td, $\left.1 \mathrm{H}, \mathrm{J}_{3^{\prime}, \mathrm{OH}}=4.9, \mathrm{~J}_{3^{\prime}, 2^{\prime}}=4.9, \mathrm{~J}_{3^{\prime}, 4^{\prime}}=3.4, \mathrm{H}-3^{\prime}\right) ; 4.20(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}-pur); 4.66 ($\left.\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{2^{\prime}, \mathrm{OH}}=5.9, \mathrm{~J}_{2^{\prime}, 1^{\prime}}=5.8, \mathrm{~J}_{2^{\prime}, 3^{\prime}}=4.9, \mathrm{H}-2^{\prime}\right) ; 5.11\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 5^{\prime}}=5.5\right.$, $\mathrm{OH}-5^{\prime}$); 5.23 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 3^{\prime}}=4.9, \mathrm{OH}-3^{\prime}$); $5.54\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{OH}, 2^{\prime}}=5.9, \mathrm{OH}-2^{\prime}\right) ; 6.02$ ($\mathrm{d}, 1 \mathrm{H}$, $\mathrm{J}_{1^{\prime}, 2^{\prime}}=5.8, \mathrm{H}-1^{\prime}$); $8.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8)$; $8.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}{ }^{2} \mathrm{NMR}\left(100.6 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$: $23.87\left(\mathrm{CH}_{2}-4\right.$-pip $) ; 25.15$ and $25.85\left(\mathrm{CH}_{2}-3,5\right.$-pip $) ; 37.69\left(\mathrm{CH}_{2}\right.$-pur $) ; 42.05$ and 46.42
$\left(\mathrm{CH}_{2}-2,6-\mathrm{pip}\right) ; 61.23\left(\mathrm{CH}_{2}-5^{\prime}\right) ; 70.28\left(\mathrm{CH}-3^{\prime}\right) ; 73.46\left(\mathrm{CH}-2^{\prime}\right) ; 85.65\left(\mathrm{CH}-4^{\prime}\right) ; 87.51\left(\mathrm{CH}-1^{\prime}\right)$; 133.05 (C-5); 144.33 (CH-8); 150.35 (C-4); 151.52 (CH-2); 156.41 (C-6); 166.07 (CO). IR (KBr): 3461, 3205, 2924, 2854, 1648, 1566, 1400, 1225. [$\alpha]_{D}{ }^{20}-32.2\left(c 0.20, \mathrm{H}_{2} \mathrm{O}\right)$.

Single Crystal X-ray Structure Analysis

The diffraction data of single crystals of $\mathbf{2 a}$ (yellowish, $0.08 \times 0.20 \times 0.48 \mathrm{~mm}$), $\mathbf{6 a}$ (white, $0.14 \times 0.23 \times 0.34 \mathrm{~mm}$) and 9 (yellowish, $0.11 \times 0.16 \times 0.28 \mathrm{~mm}$) were collected on Xcalibur X-ray diffractometer with CuK $\alpha(\lambda=1.54180 \AA$) at 295 (2a), 150 (6a) and 298 K (9a). All structures were solved by direct methods with SIR92 ${ }^{31}$ and refined by full-matrix, least-squares methods based on F with CRYSTALS ${ }^{32}$. The hydrogen atoms were located in a difference map, but those attached to carbon atoms were repositioned geometrically and then refined with riding constraints, while all other atoms were refined anisotropically in both cases.

Crystal data for 2a: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$, triclinic, space group P-1, $\mathrm{a}=8.4835(7) \mathrm{A}, \mathrm{b}=9.0266(7) \AA$, , $c=11.4610(10) \AA, \alpha=68.357(8)^{\circ}, \beta=68.845(8)^{\circ}, \gamma=83.135(7)^{\circ}, \mathrm{V}=760.71(12) \AA^{3}, Z=2$, $M=296.33,10494$ reflections measured, 3059 independent reflections. Final $R=0.0579$, $\mathrm{wR}=0.0767$, GOF $=1.0550$ for 2491 reflections with $\mathrm{I}>1.96 \sigma(\mathrm{I})$ and 200 parameters.

Crystal data for 6a: $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{1}$, triclinic, space group P-1, $a=5.6172(7) \AA, b=9.9556(8) \AA$, $c=11.3924(9) \AA, \alpha=104.037(7)^{\circ}, \beta=92.518(8)^{\circ}, \gamma=93.687(8)^{\circ}, \mathrm{V}=615.62(11) \AA^{3}, Z=2$, $M=254.29$, 8392 reflections measured, 2454 independent reflections. Final $R=0.0362$, $w R=0.0361$, GOF $=1.2047$ for 2302 reflections with $I>1.96 \sigma(I)$ and 173 parameters.

Crystal data for 9a: $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{1}$, triclinic, space group $\mathrm{P}-1$, $\mathrm{a}=11.5005(5) \AA, \mathrm{b}=$ $12.3904(6) \AA, c=13.0988(6) \AA, \alpha=77.743(4)^{\circ}, \beta=75.914(4)^{\circ}, \gamma=89.505(4)^{\circ}, \mathrm{V}=$ 1767.31(15) $\AA^{3}, Z=4, M=335.41$, 55857 reflections measured, 7451 independent reflections. Final $R=0.0389, w R=0.0442, G O F=1.1029$ for 3681 reflections with $I>1.5 \sigma(\mathrm{I})$ and 452 parameters.

CCDC 638672 (2a), 638673 ($6 a), 724480$ (9a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

This work is a part of the research project Z4 055 0506. It was supported by the Centre for New Antivirals and Antineoplastics (1M0508), by the Programme of Targeted Projects of Academy of Sciences of the Czech Republic (1QS400550501) and by Gilead Sciences, Inc. (Foster City (CA), USA).

REFERENCES

1. a) Hocek M., Holý A., Votruba I., Dvořáková H.: J. Med. Chem. 2000, 43, 1817; b) Hocek M., Holý A., Votruba I., Dvořáková H.: Collect. Czech. Chem. Commun. 2001, 66, 483; c) Nauš P., Kuchař M., Hocek M.: Collect. Czech. Chem. Commun. 2008, 73, 665.
2. Hocek M., Nauš P., Pohl R., Votruba I., Furman P. A., Tharnish P. M., Otto M. J.: J. Med. Chem. 2005, 48, 5869.
3. a) Bakkestuen A. K., Gundersen L.-L., Langli G., Liu F., Nolsoe J. M. J.: Bioorg. Med. Chem. Lett. 2000, 10, 1207; b) Andresen G., Gundersen L.-L., Nissen-Meyer J., Rise F., Spilsberg B.:

Bioorg. Med. Chem. Lett. 2002, 12, 567; c) Gundersen L.-L., Nissen-Meyer J., Spilsberg B.: J. Med. Chem. 2002, 45, 1383; d) Bakkestuen A. K., Gundersen L.-L., Utenova B. T.: J. Med. Chem. 2005, 48, 2710; e) Brandvang M., Gundersen L.-L.: Bioorg. Med. Chem. 2005, 13, 6360; f) Brandvang M., Gundersen L.-L.: Bioorg. Med. Chem. 2007, 15, 7144.
4. a) Cocuzza A. J., Chidester D. R., Culp S., Fitzgerald L., Gilligan P.: Bioorg. Med. Chem. Lett. 1999, 9, 1063; b) Chang L. C. W., Spanjersberg R. F., von Frijtag Drabbe Kunzel J. K., Mulder-Krieger T., Brussee J., Ijzerman A. P.: J. Med. Chem. 2006, 49, 2861.
5. Montgomery J. A., Hewson K.: J. Med. Chem. 1968, 11, 48.
6. Parker W. B., King S. A., Allan P. W., Bennett L. L., Jr., Secrist III J. A., Montgomery J. A., Gilbert K. S., Waud W. R., Wells A. H., Gillespie G. Y., Sorscher E. J.: Hum. Gene Ther. 1997, 8, 1637.
7. a) Šilhár P., Pohl R., Votruba I., Hocek M.: Org. Lett. 2004, 6, 3225; b) Šilhár P., Pohl R., Votruba I., Hocek M.: Collect. Czech. Chem. Commun. 2005, 70, 1669.
8. Šilhár P., Pohl R., Votruba I., Hocek M.: Org. Biomol. Chem. 2005, 3, 3001.
9. Šilhár P., Pohl R., Votruba I., Hocek M.: Synthesis 2006, 1848.
10. Čapek P., Pohl R., Votruba I., Hocek M.: J. Org. Chem. 2004, 69, 7985.
11. Čapek P., Pohl R., Hocek M.: J. Org. Chem. 2005, 70, 8001.
12. Šilhár P., Hocek M., Pohl R., Votruba I., Shih I.-h., Mabery E., Mackman R.: Bioorg. Med. Chem. 2008, 16, 2329.
13. Kuchař M., Hocek M., Pohl R., Votruba I., Shih I.-h., Mabery E., Mackman R.: Bioorg. Med. Chem. 2008, 16, 1400.
14. Kuchař M., Pohl R., Klepetářová B., Hocek M.: Tetrahedron 2008, 64, 10355.
15. Kuchař M., Pohl R., Klepetářová B., Votruba I., Hocek M.: Org. Biomol. Chem. 2008, 6, 2377.
16. Hasník Z., Šilhár P., Hocek M.: Tetrahedron Lett. 2007, 48, 5589.
17. Montgomery J. A., Hewson K.: J. Org. Chem. 1965, 30, 1528.
18. Odijk W. M., Koomen G. J.: Tetrahedron 1985, 41, 1893.
19. a) Sakata S., Yonei S., Yoshino H.: Chem. Pharm. Bull. 1982, 30, 2583; b) Hamamichi N., Miyasaka T.: J. Heterocycl. Chem. 1990, 27, 2011; c) Qu G.-R., Mao Z.-J., Niu H.-Y., Wang D.-C., Xia C., Guo H.-M.: Org. Lett. 2009, 11, 1745.
20. Fauvarque J. F., Jutand A.: J. Organomet. Chem. 1979, 177, 273.
21. a) Jørgensen M., Lee S., Liu X., Wolkowski J. P., Hartwig J. F.: J. Am. Chem. Soc. 2002, 124, 12557; b) Hama T., Liu X., Culkin D. A., Hartwig J. F.: J. Am. Chem. Soc. 2003, 125, 11176; c) Hama T., Culkin D. A., Hartwig J. F.: J. Am. Chem. Soc. 2006, 128, 4976; d) Hlavinka M. L., Hagadorn J. R.: Tetrahedron Lett. 2006, 47, 5049.
22. Knochel P., Yeh M. C. P., Berk S. C., Talbert J.: J. Org. Chem. 1988, 53, 2390.
23. Aranyos A., Old D. W., Kiyomori A., Wolfe J. P., Sadighi J. P., Buchwald S. L.: J. Am. Chem. Soc. 1999, 121, 4369.
24. Corey E. J., Jones G. B.: J. Org. Chem. 1992, 57, 1028.
25. Hřebabecký H., Dračínský M., Holý A.: Collect. Czech. Chem. Commun. 2007, 72, 1331.
26. Högberg T., Ström P., Ebner M., Rämsby S.: J. Org. Chem. 1987, 52, 2033.
27. Kuchař M., Pohl R., Votruba I., Hocek M.: Eur. J. Org. Chem. 2006, 5083.
28. Hocek M., Holý A.: Collect. Czech. Chem. Commun. 1995, 60, 1386.
29. Gundersen L.-L., Bakkestuen A. K., Aasen A. J., Overas H., Rise F.: Tetrahedron 1994, 50, 9743.
30. Montgomery J. A., Hewson K.: J. Org. Chem. 1965, 30, 1528.
31. Altomare A., Cascarano G., Giacovazzo G., Guagliardi A., Burla M. C., Polidori G., Camalli M.: J. Appl. Crystallogr. 1994, 27, 435.
32. Betteridge P. W., Carruthers J. R., Cooper R. I., Prout K., Watkin D. J.: J. Appl. Crystallogr. 2003, 36, 1487.

[^0]: ${ }^{a} \mathrm{LiAlH}_{4}, \mathrm{LiBEt}_{3} \mathrm{H}$ and L-Selectride. ${ }^{\mathrm{b}}$ Followed by MnO_{2}.

