Collect. Czech. Chem. Commun. 2009, 74, 1023-1034
https://doi.org/10.1135/cccc2009053
Published online 2009-06-26 18:24:49

Bio- and air-tolerant carbon–carbon bond formations via organometallic ruthenium catalysis

Louis Adriaenssens, Lukáš Severa, Jan Vávra, Tereza Šálová, Jakub Hývl, Martina Čížková, Radek Pohl, David Šaman and Filip Teplý*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

References

1. Corey E. J., Cheng X.-M.: The Logic of Chemical Synthesis. Wiley, New York 1995.
2a. Crabtree R. H.: The Organometallic Chemistry of the Transition Metals, 4th ed. Wiley, Hoboken 2005.
2b. Hegedus L. S.: Transition Metals in the Synthesis of Complex Organic Molecules, 2nd ed. University Science Books, Sausalito 1999.
3a. Kovacs J. A., Shoner S. C., Ellison J. J.: Science 1995, 270, 587. <https://doi.org/10.1126/science.270.5236.587>
3b. Jaouen G. (Ed.): Bioorganometallics. Wiley-VCH, Weinheim 2006.
3c. Beck W., Severin K.: Chem. Unserer Zeit 2002, 36, 356. <https://doi.org/10.1002/1521-3781(200212)36:6<356::AID-CIUZ356>3.0.CO;2-F>
4a. Allardyce C. S., Dorcier A., Scolaro C., Dyson P. J.: Appl. Organomet. Chem. 2005, 19, 1. <https://doi.org/10.1002/aoc.725>
4b. Yan Y. K., Melchart M., Habtemariam A., Sadler P. J.: Chem. Commun. 2005, 4764; Also see refs3b,3c. <https://doi.org/10.1039/b508531b>
5a. Li C.-J.: Chem. Rev. 2005, 105, 3095. <https://doi.org/10.1021/cr030009u>
5b. Li C.-J., Chan T.-H.: Comprehensive Organic Reactions in Aqueous Media. Wiley, Hoboken 2007.
5c. Lipshutz B. H., Ghorai S.: Aldrichimica Acta 2008, 41, 59.
6. For leading discussion on the catalytic aspect of bioorganometallic chemistry, see: Streu C., Meggers E.: Angew. Chem. Int. Ed. 2006, 45, 5645. <https://doi.org/10.1002/anie.200601752>
7a. Vigh L., Joó F., Cséplö M.: Eur. J. Biochem. 1985, 146, 241. <https://doi.org/10.1111/j.1432-1033.1985.tb08645.x>
7b. Horváth I., Glatz A., Varvasovszki V., Török Z., Páli T., Balogh G., Kovács E., Nádasdi L., Benkö S., Joó F., Vigh L.: Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3513. <https://doi.org/10.1073/pnas.95.7.3513>
8a. For a note on CuAAC in human plasma, see: Rostovtsev V. V., Green L. G., Fokin V. V., Sharpless K. B.: Angew. Chem. Int. Ed. 2002, 41, 2596. <https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4>
8b. For CuAAC with living cells, see Link A. J., Tirrell D. A.: J. Am. Chem. Soc. 2003, 125, 11164. <https://doi.org/10.1021/ja036765z>
9a. Editorial address highlighting the need for non-coded reaction candidates amenable to integration with complex living cell environment, see: Sames D.: Chem. Eng. News 2001, 79, 276.
9b. For recent overviews, see: Prescher J. A., Bertozzi C. R.: Nat. Chem. Biol. 2005, 1, 13. <https://doi.org/10.1038/nchembio0605-13>
9c. Barglow K. T., Cravatt B. F.: Nat. Methods 2007, 4, 822. <https://doi.org/10.1038/nmeth1092>
9d. Kurpiers T., Mootz H. D.: Angew. Chem. Int. Ed. 2009, 48, 1729. <https://doi.org/10.1002/anie.200805454>
10a. Lin Y. A., Chalker J. M., Floyd N., Bernardes G. J., Davis B. G.: J. Am. Chem. Soc. 2008, 130, 9642. <https://doi.org/10.1021/ja8026168>
10b. Tilley S. D., Francis M. B.: J. Am. Chem. Soc. 2006, 128, 1080. <https://doi.org/10.1021/ja057106k>
10c. Antos J. M., Francis M. B.: J. Am. Chem. Soc. 2004, 126, 10256. <https://doi.org/10.1021/ja047272c>
10d. McFarland J. M., Francis M. B.: J. Am. Chem. Soc. 2005, 127, 13490. <https://doi.org/10.1021/ja054686c>
10e. Mortell K. H., Gingras M., Kiessling L. L.: J. Am. Chem. Soc. 1994, 116, 12053. <https://doi.org/10.1021/ja00105a056>
10f. Dibowski H., Schmidtchen F. P.: Angew. Chem. Int. Ed. 1998, 37, 476. <https://doi.org/10.1002/(SICI)1521-3773(19980302)37:4<476::AID-ANIE476>3.0.CO;2-2>
10g. Bong D. T., Ghadiri M. R.: Org. Lett. 2001, 3, 2509. <https://doi.org/10.1021/ol016169e>
10h. Ojida A., Tsutsumi H., Kasagi N., Hamachi I.: Tetrahedron Lett. 2005, 46, 3301. <https://doi.org/10.1016/j.tetlet.2005.03.094>
10i. Liebeskind L. S., Yang H.; Li H.: Angew. Chem. Int. Ed. 2009, 48, 1417. <https://doi.org/10.1002/anie.200804524>
10j. For overview, see: Antos J. M., Francis M. B.: Curr. Opin. Chem. Biol. 2006, 10, 253, and references therein. <https://doi.org/10.1016/j.cbpa.2006.04.009>
11a. Butler P. A., Kräutler B.: Top. Organomet. Chem. 2006, 17, 1. <https://doi.org/10.1007/3418_004>
11b. Specifically, anaerobic archebacteria employ methyl- cobaltamin in conjuction with nickel organometallics in an acetyl–coenzyme A synthase- catalyzed coupling of carbon monoxide with a methyl group to construct a C–C bond in an acetyl moiety, see: Ragsdale S. W.: Chem. Rev. 2006, 106, 3317. <https://doi.org/10.1021/cr0503153>
11c. A related catalytic pathway, involving organometallics under anaerobic aqueous conditions, has been proposed to be the primordial initiation reaction for a chemoautotrophic origin of life, see: Huber C., Wächtershäuser G.: Science 1997, 276, 245. <https://doi.org/10.1126/science.276.5310.245>
11d. Crabtree R. H.: Science 1997, 276, 222. <https://doi.org/10.1126/science.276.5310.222>
12a. For pioneering report, see: Agard N. J., Prescher J. A., Bertozzi C. R.: J. Am. Chem. Soc. 2004, 126, 15046. <https://doi.org/10.1021/ja044996f>
12b. For an overview, see: Agard N. J., Baskin J. M., Prescher J. A., Lo A., Bertozzi C. R.: ACS Chem. Biol. 2006, 1, 644. <https://doi.org/10.1021/cb6003228>
13a. Wang Q., Chan T. R., Hilgraf R., Fokin V. V., Sharpless K. B., Finn M. G.: J. Am. Chem. Soc. 2003, 125, 3192. <https://doi.org/10.1021/ja021381e>
13b. Speers A. E., Cravatt B. F.: Chem. Biol. 2004, 11, 535; Also see ref.8. <https://doi.org/10.1016/j.chembiol.2004.03.012>
14a. Dérien S., Dixneuf P. H.: J. Organomet. Chem. 2004, 689, 1382. <https://doi.org/10.1016/j.jorganchem.2003.12.006>
14b. Trost B. M., Frederiksen M. U., Rudd M. T.: Angew. Chem. Int. Ed. 2005, 44, 6630, and references therein. <https://doi.org/10.1002/anie.200500136>
15. For an initial report on this process under anhydrous conditions and inert atmosphere, see: Yamamoto Y., Arakawa T., Ogawa R., Itoh K.: J. Am. Chem. Soc. 2003, 125, 12143. <https://doi.org/10.1021/ja0358697>
16a. For rare [2+2+2] cycloadditions in presence of O2, see:Severa L., Vávra J., Kohoutová A., Čížková M., Šálová T., Hývl J., Šaman D., Pohl R., Adriaenssens L., Teplý F.: Tetrahedron Lett. 2009, 50, 4526. <https://doi.org/10.1016/j.tetlet.2009.05.079>
16b. Yokota T., Sakurai Y., Sakaguchi S., Ishii Y.: Tetrahedron Lett. 1997, 38, 3923. <https://doi.org/10.1016/S0040-4039(97)00780-6>
16c. Ardizzoia G. A., Brenna S., LaMonica G., Maspero A., Masciocchi N.: J. Organomet. Chem. 2002, 649, 173. <https://doi.org/10.1016/S0022-328X(02)01114-2>
16d. Geny A., Agenet N., Iannazzo L., Malacria M., Aubert C., Gandon V.: Angew. Chem. Int. Ed. 2009, 48, 1810; Also see ref.25. <https://doi.org/10.1002/anie.200806001>
17. For [2+2+2] cycloadditions catalyzed by [{Ru(η33-C10H16)(μ-Cl)Cl}2] in mixtures of H2O/MeOH under N2 atmosphere at 75 °C, see: Cadierno V., García-Garrido S. E., Gimeno J.: J. Am. Chem. Soc. 2006, 128, 15094. <https://doi.org/10.1021/ja066552k>
18. For an initial report on this process under anhydrous conditions and inert atmosphere, see: Yamamoto Y., Kinpara K., Ogawa R., Nishiyama H., Itoh K.: Chem.-Eur. J. 2006, 12, 5618. <https://doi.org/10.1002/chem.200600176>
19. Šálová T.: M.S. Thesis. Charles University, Prague 2008.
20. For an initial report on this process under inert atmosphere in presence of water, see: Dérien S., Jan D., Dixneuf P. H.: Tetrahedron 1996, 52, 5511. <https://doi.org/10.1016/0040-4020(96)00185-8>
21. For a note on oxygen- and moisture-tolerance of Ru-catalyzed alkene–alkyne coupling, see: Trost B. M., Pinkerton A. B., Toste F. D., Sperrle M.: J. Am. Chem. Soc. 2001, 123, 12504; In spite of this note, the reactions are invariably run under an inert atmosphere, see ref.14b; The attractive O2 and H2O-compatibility of this process remains, to the best of our knowledge, unexplored. <https://doi.org/10.1021/ja012009m>
22. For a recent example of aldehyde follow-up reactivity, see: Angelov T., Guainazzi A., Schärer O. D.: Org. Lett. 2009, 11, 661. <https://doi.org/10.1021/ol802719a>
23. This process has been recently described to proceed rapidly in presence of water under inert atmosphere, see: Monnier F., Vovard-Le Bray C., Castillo D., Aubert V., Dérien S., Dixneuf P. H., Toupet L., Lenco A., Mealli C.: J. Am. Chem. Soc. 2007, 129, 6037. <https://doi.org/10.1021/ja0700146>
24. Preliminary NMR investigation suggests 13 was obtained as a racemate.
25. Adriaenssens L., Severa L., Šálová T., Císařová I., Pohl R., Šaman D., Rocha S. V., Finney N. S., Pospíšil L., Slavíček P., Teplý F.: Chem.-Eur. J. 2009, 15, 1072. <https://doi.org/10.1002/chem.200990004>
26. Yield determined by 1H NMR with comparison to DMSO as an internal standard. Details in Electronic Supplementary Data section.
27. Details in Electronic Supplementary Data accompanying this article.
28a. Williams D. S., Atilla G. E., Bregman H., Arzoumanian A., Klein P. S., Meggers E.: Angew. Chem. Int. Ed. 2005, 44, 1984. <https://doi.org/10.1002/anie.200462501>
28b. For a review, see: Melchart M., Sadler P. J. in: Bioorganometallics (G. Jaouen, Ed.), p. 39. Wiley-VCH, Weinheim 2006; Also see refs4a,4b.
28c. For a recent account, see: Gossens C., Tavernelli I., Rothlisberger U.: J. Am. Chem. Soc. 2008, 130, 10921. <https://doi.org/10.1021/ja800194a>
28d. For excellent overview, see: Meggers E.: Curr. Opin. Chem. Biol. 2007, 11, 287. <https://doi.org/10.1016/j.cbpa.2007.05.013>
29. Amabilino D. B., Ashton P. R., Reder A. S., Spencer N., Stoddart J. F.: Angew. Chem., Int. Ed. Engl. 1994, 33, 1286. <https://doi.org/10.1002/anie.199412861>
30. Gibson S. E., Kaufmann K. A. C., Haycock P. R., White A. J. P., Hardick D. J., Tozer M. J.: Organometallics 2007, 26, 1578. <https://doi.org/10.1021/om070022v>
31. Monnier F., Castillo D., Dérien S., Toupet L., Dixneuf P. H.: Angew. Chem. Int. Ed. 2003, 42, 5474. <https://doi.org/10.1002/anie.200352477>