Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2009, 74, 1023-1034
https://doi.org/10.1135/cccc2009053
Published online 2009-06-26 18:24:49

Bio- and air-tolerant carbon–carbon bond formations via organometallic ruthenium catalysis

Louis Adriaenssens, Lukáš Severa, Jan Vávra, Tereza Šálová, Jakub Hývl, Martina Čížková, Radek Pohl, David Šaman and Filip Teplý*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

Crossref Cited-by Linking

  • Gutiérrez‐González Alejandro, López Fernando, Mascareñas José L.: Ruthenium Catalysis in Biological Habitats. Helvetica Chimica Acta 2023, 106. <https://doi.org/10.1002/hlca.202300001>
  • Miguel-Ávila Joan, Tomás-Gamasa María, Mascareñas José L.: Metal-promoted synthetic chemistry within living cells. Trends in Chemistry 2023, 5, 474. <https://doi.org/10.1016/j.trechm.2023.04.001>
  • Gutiérrez-González Alejandro, Marcos-Atanes Daniel, Cool Leonard G., López Fernando, Mascareñas José L.: Ruthenium-catalyzed intermolecular alkene–alkyne couplings in biologically relevant media. Chem. Sci. 2023, 14, 6408. <https://doi.org/10.1039/D3SC01254A>
  • Gutiérrez Sara, Tomás-Gamasa María, Mascareñas José Luis: Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chem. Sci. 2022, 13, 6478. <https://doi.org/10.1039/D2SC00721E>
  • Doerksen Rosalie S., Hodík Tomáš, Hu Guanyu, Huynh Nancy O., Shuler William G., Krische Michael J.: Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem. Rev. 2021, 121, 4045. <https://doi.org/10.1021/acs.chemrev.0c01133>
  • Miguel‐Ávila Joan, Tomás‐Gamasa María, Mascareñas José L.: Intracellular Ruthenium‐Promoted (2+2+2) Cycloadditions. Angewandte Chemie 2020, 132, 17781. <https://doi.org/10.1002/ange.202006689>
  • Miguel‐Ávila Joan, Tomás‐Gamasa María, Mascareñas José L.: Intracellular Ruthenium‐Promoted (2+2+2) Cycloadditions. Angew Chem Int Ed 2020, 59, 17628. <https://doi.org/10.1002/anie.202006689>
  • Kaur Navjeet, Ahlawat Neha, Verma Yamini, Grewal Pooja, Bhardwaj Pranshu: A Review of Ruthenium-catalyzed C-N Bond Formation Reactions for the Synthesis of Five-membered N-heterocycles. COC 2019, 23, 1901. <https://doi.org/10.2174/1385272823666191021104118>
  • Wilson Yvonne M., Dürrenberger Marc, Nogueira Elisa S., Ward Thomas R.: Neutralizing the Detrimental Effect of Glutathione on Precious Metal Catalysts. J. Am. Chem. Soc. 2014, 136, 8928. <https://doi.org/10.1021/ja500613n>
  • Heinisch Tillmann, Langowska Karolina, Tanner Pascal, Reymond Jean‐Louis, Meier Wolfgang, Palivan Cornelia, Ward Thomas R.: Fluorescence‐Based Assay for the Optimization of the Activity of Artificial Transfer Hydrogenase within a Biocompatible Compartment. ChemCatChem 2013, 5, 720. <https://doi.org/10.1002/cctc.201200834>
  • Vávra Jan, Severa Lukáš, Císařová Ivana, Klepetářová Blanka, Šaman David, Koval Dušan, Kašička Václav, Teplý Filip: Search for Conglomerate in Set of [7]Helquat Salts: Multigram Resolution of Helicene–Viologen Hybrid by Preferential Crystallization. J. Org. Chem. 2013, 78, 1329. <https://doi.org/10.1021/jo301615k>
  • Yamamoto Yoshihiko: Syntheses of Heterocycles via Alkyne Cycloadditions Catalyzed by Cyclopentadienylruthenium-Type Complexes. HETEROCYCLES 2013, 87, 2459. <https://doi.org/10.3987/REV-13-783>
  • Vávra Jan, Severa Lukáš, Švec Pavel, Císařová Ivana, Koval Dušan, Sázelová Petra, Kašička Václav, Teplý Filip: Preferential Crystallization of a Helicene–Viologen Hybrid – An Efficient Method to Resolve [5]Helquat Enantiomers on a 20 g Scale. Eur J Org Chem 2012, 2012, 489. <https://doi.org/10.1002/ejoc.201101367>
  • Nag Somnath, Batra Sanjay: Applications of allylamines for the syntheses of aza-heterocycles. Tedrahedron 2011, 67, 8959. <https://doi.org/10.1016/j.tet.2011.07.087>
  • Čížková Martina, Kolivoška Viliam, Císařová Ivana, Šaman David, Pospíšil Lubomír, Teplý Filip: Nitrogen heteroaromatic cations by [2+2+2] cycloaddition. Org. Biomol. Chem. 2011, 9, 450. <https://doi.org/10.1039/C0OB00507J>
  • Ringenberg Mark R., Ward Thomas R.: Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. Chemical Communication 2011, 47, 8470. <https://doi.org/10.1039/c1cc11592h>
  • Cadierno Victorio, Francos Javier, García-Garrido Sergio E., Gimeno José: Ruthenium-catalyzed intermolecular [2+2+2] alkyne cyclotrimerization in aqueous media under microwave irradiation. Green Chem Lett & Revs 2011, 4, 55. <https://doi.org/10.1080/17518253.2010.500623>
  • Adriaenssens Louis, Severa Lukas, Vavra Jan, Salova Tereza, Hyvl Jakub, Cizkova Martina, Pohl Radek, Saman David, Teply Filip: ChemInform Abstract: Bio‐ and Air‐Tolerant Carbon—Carbon Bond Formations via Organometallic Ruthenium Catalysis. ChemInform 2010, 41. <https://doi.org/10.1002/chin.201003022>
  • Severa Lukáš, Adriaenssens Louis, Vávra Jan, Šaman David, Císařová Ivana, Fiedler Pavel, Teplý Filip: Highly modular assembly of cationic helical scaffolds: rapid synthesis of diverse helquats via differential quaternization. Tetrahedron 2010, 66, 3537. <https://doi.org/10.1016/j.tet.2010.03.007>
  • Severa Lukáš, Koval Dušan, Novotná Pavlína, Ončák Milan, Sázelová Petra, Šaman David, Slavíček Petr, Urbanová Marie, Kašička Václav, Teplý Filip: Resolution of a configurationally stable [5]helquat: enantiocomposition analysis of a helicene congener by capillary electrophoresis. New J. Chem. 2010, 34, 1063. <https://doi.org/10.1039/c0nj00085j>