Collect. Czech. Chem. Commun. 2009, 74, 973-993
https://doi.org/10.1135/cccc2009030
Published online 2009-06-23 16:50:55

Catalytic effect of alloxazinium and isoalloxazinium salts on oxidation of sulfides with hydrogen peroxide in micellar media

Radek Cibulkaa,*, Lenka Baxováa, Hana Dvořákováb, František Hampla, Petra Ménováa, Viktor Mojra, Baptiste Plancqc and Serkan Sayind

a Department of Organic Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
b Central Laboratories, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
c Département de chimie, Pavillon Alexandre Vachon, Université Laval, Québec, G1V 0A6, Canada
d Department of Chemistry, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey

References

1a. Bäckvall J.-E. in: Modern Oxidation Methods (J.-E. Bäckvall, Ed.), pp. 193–222. Wiley-VCH, Weinheim 2004.
1b. Gelalcha F. G.: Chem. Rev. 2007, 107, 3338. <https://doi.org/10.1021/cr0505223>
1c. Yasushi I., Takeshi N.: Chem. Record 2007, 7, 354.
2. Murahashi S.-I., Oda T., Masui Y.: J. Am. Chem. Soc. 1989, 111, 5002. <https://doi.org/10.1021/ja00195a076>
3. Mazzini C., Lebreton J., Furstoss R.: J. Org. Chem. 1996, 61, 618. <https://doi.org/10.1021/jo951905b>
4. Bergstad K., Bäckvall J.-E.: J. Org. Chem. 1998, 63, 6650. <https://doi.org/10.1021/jo980926d>
5a. Minidis A. B. E., Bäckvall J.-E.: Chem. Eur. J. 2001, 7, 297. <https://doi.org/10.1002/1521-3765(20010105)7:1<297::AID-CHEM297>3.0.CO;2-6>
5b. Lindén A. A., Krüger L., Bäckvall J.-E.: J. Org. Chem. 2003, 68, 5890. <https://doi.org/10.1021/jo034273z>
5c. Lindén A. A., Hermanns N., Ott S., Krüger L., Bäckvall J.-E.: Chem. Eur. J. 2005, 11, 112. <https://doi.org/10.1002/chem.200400540>
5d. Lindén A. A., Johansson M., Hermanns N., Bäckvall J.-E.: J. Org. Chem. 2006, 71, 3849. <https://doi.org/10.1021/jo060274q>
5e. Imada Y., Iida H., Ono S., Masui Y., Murahashi S.-I.: Chem. Asian J. 2006, 136. <https://doi.org/10.1002/asia.200600080>
6a. Shinkai S., Yamaguchi T., Kawase A., Kitamura A., Manabe O.: Chem. Commun. 1987, 1506. <https://doi.org/10.1039/c39870001506>
6b. Shinkai S., Yamaguchi T., Manabe O., Toda F.: Chem. Commun. 1988, 1399. <https://doi.org/10.1039/c39880001399>
6c. Murahashi S.-I.: Angew. Chem., Int. Ed. Engl. 1995, 34, 2443. <https://doi.org/10.1002/anie.199524431>
7. Murahashi S.-I., Ono S., Imada Y.: Angew. Chem. Int. Ed. 2002, 41, 2366. <https://doi.org/10.1002/1521-3773(20020703)41:13<2366::AID-ANIE2366>3.0.CO;2-S>
8. Baxová L., Cibulka R., Hampl F.: J. Mol. Catal. A 2007, 277, 53. <https://doi.org/10.1016/j.molcata.2007.07.027>
9a. Kemal C., Chan T. W., Bruice T. C.: Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 405. <https://doi.org/10.1073/pnas.74.2.405>
9b. Bruice T. C.: Acc. Chem. Res. 1980, 13, 256. <https://doi.org/10.1021/ar50152a002>
9c. Miller A.: Tetrahedron Lett. 1982, 23, 753.
10a. Palfey B., Massey V. in: Comprehensive Biological Catalysis (M. Sinnott, Ed.), Vol. 3, pp. 83–154. Academic Press, London 1998.
10b. Moonen M. J. H., Fraaije M. W., Rietjens I. M. C. M., Laane C., van Berkel W. J. H.: Adv. Synth. Catal. 2002, 10, 1023. <https://doi.org/10.1002/1615-4169(200212)344:10<1023::AID-ADSC1023>3.0.CO;2-T>
11a. Ogino K., Yoshida T., Yamamoto H., Tagaki W.: Chem. Lett. 1992, 1197. <https://doi.org/10.1246/cl.1992.1197>
11b. Menger F. M., Keiper J. S., Mbadugha B. N. A., Caran K. L., Romsted L. S.: Langmuir 2000, 16, 9095. <https://doi.org/10.1021/la0003692>
11c. Kotoučová H., Cibulka R., Hampl F., Liška F.: J. Mol. Catal. A 2001, 174, 59. <https://doi.org/10.1016/S1381-1169(01)00178-9>
11d. Cibulka R., Hampl F., Kotoučová H., Mazáč J., Liška F.: Collect. Czech. Chem. Commun. 2000, 65, 227. <https://doi.org/10.1135/cccc20000227>
11e. Kivala M., Cibulka R. Hampl F.: Collect. Czech. Chem. Commun. 2006, 71, 1642. <https://doi.org/10.1135/cccc20061642>
12. Yoneda F., Sakuma Y., Ichiba M., Shinomura K.: J. Am. Chem. Soc. 1976, 98, 830. <https://doi.org/10.1021/ja00419a034>
13. Holmgren A. V., Wenner W.: Org. Synth. 1952, 32, 6.
14. Unfortunately, we were not able to achieve the optimum pH value in SDS micelles in the case of amphiphilic salts 2 since no suitable buffer is available for sulfoxidation experiments at pH > 8. All the anions in inorganic buffers operating above pH 8 react with hydrogen peroxide under formation of corresponding peroxoanions (peroxo- phosphates and peroxoborates). The so-called biological buffers containing tertiary amino group cannot be used either due to formation of the corresponding N-oxides.
15. Merényi G., Lind J.: J. Am. Chem. Soc. 1991, 113, 3146. <https://doi.org/10.1021/ja00008a051>
16. Dehmlow E. V., Dehmlow S. S.: Phase Transfer Catalysis, 3rd ed. Wiley-VCH, Weinheim 1993.
17. Micellar binding of any organic substance is generally described by a binding constant KS = [Sm]/[Sw][Dn], where [Sm] and [Sw] are the concentrations of the substance in micellar and aqueous phase, respectively, and [Dn] is the concentration of micellized surfactant, see: Sepulveda L., Lissi E., Quina F.: Adv. Colloid Interface Sci. 1986, 25, 1. <https://doi.org/10.1016/0001-8686(86)80001-X>
18. Stein A., Gregor H. P., Spoerri P. E.: J. Am. Chem. Soc. 1956, 78, 6185. <https://doi.org/10.1021/ja01604a065>
19. Ohno A., Kunitomo J., Kawai Y., Kawamoto T., Tomishima M., Yoneda F.: J. Org. Chem. 1996, 61, 9344. <https://doi.org/10.1021/jo961799t>
20. Li W.-S., Zhang N., Sayre L. M.: Tetrahedron 2001, 57, 4507. <https://doi.org/10.1016/S0040-4020(01)00313-1>
21. Origin 6.1. OriginLab Corporation, Northampton 2000.
22a. Milyaeva N. M.: Zh. Neorg. Khim. 1958, 3, 2011.
22b. Dawber J. G.: J. Chem. Soc. A 1968, 1532. <https://doi.org/10.1039/j19680001532>