Collect. Czech. Chem. Commun. 2009, 74, 651-769
https://doi.org/10.1135/cccc2008181
Published online 2009-06-01 14:24:54

Enantioselective synthesis of structurally intricate and complementary polyoxygenated building blocks of Spongistatin 1 (Altohyrtin A)

Alain Braun, Il Hwan Cho, Stephane Ciblat, Dean Clyne, Pat Forgione, Amy C. Hart, Guoxiang Huang, Jungchul Kim, Isabelle Modolo, Leo A. Paquette*, Xiaowen Peng, Stefan Pichlmair, Catherine A. Stewart, Jizhou Wang and Dmitry Zuev

Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210, U.S.A.

References

1. Isolation: Pettit G. R.: Prog. Chem. Org. Nat. Prod. 1991, 57, 153.
2a. Kageyama M., Tamura T., Nantz M. H., Roberts J. C., Somfai P., Whritenour D. C., Masamune S.: J. Am. Chem. Soc. 1990, 112, 7407. <https://doi.org/10.1021/ja00176a058>
2b. Manaviazar S., Frigerio M., Bhatia G. S., Gurpreet S., Hummersone M. G., Aliev A. E., Hale K. J.: Org. Lett. 2006, 8, 4477. <https://doi.org/10.1021/ol061626i>
2c. Ohmori K., Ogawa Y., Obitsu T., Ishikawa Y., Nishiyama S., Yamamura S.: Angew. Chem. Int. Ed. 2000, 39, 2290. <https://doi.org/10.1002/1521-3773(20000703)39:13<2290::AID-ANIE2290>3.0.CO;2-6>
2d. Evans D. A., Carter P. H., Carreira E. M., Prunet J. A., Charette A. B., Lautens M.: Angew. Chem. Int. Ed. 1998, 37, 2354. <https://doi.org/10.1002/(SICI)1521-3773(19980918)37:17<2354::AID-ANIE2354>3.0.CO;2-9>
3. Pettit G. R., Herald C. L., Boyd M. R., Leet J. E., Dufresne C., Doubek D. L., Schmidt J. M., Cerny R. L., Hooper J. N. A., Rützler K. C.: J. Med. Chem. 1991, 34, 3339. <https://doi.org/10.1021/jm00115a027>
4. Synthesis: Aicher T. D., Buszek K. R., Fang F. G., Forsyth C. J., Jung S. H., Kishi Y., Matelich M. C., Scola P. M., Spero D. M., Yoon S. K.: J. Am. Chem. Soc. 1992, 114, 3162. <https://doi.org/10.1021/ja00034a086>
5a. Kobayashi M., Tanaka J., Katori T., Matsuura M., Kitagawa I.: Tetrahedron Lett. 1989, 30, 2963. <https://doi.org/10.1016/S0040-4039(00)99170-6>
5b. Kobayashi M., Tanaka J., Katori T., Kitagawa I.: Chem. Pharm. Bull. 1990, 38, 2960. <https://doi.org/10.1248/cpb.38.2960>
6a. Paterson I., Yeung K., Ward R. A., Cumming J. G., Smith J. D.: J. Am. Chem. Soc. 1994, 116, 9391. <https://doi.org/10.1021/ja00099a091>
6b. Paterson I., Yeung K., Ward R. A., Smith J. D., Cumming J. G., Lamboley S.: Tetrahedron 1995, 51, 9467. <https://doi.org/10.1016/0040-4020(95)00549-N>
6c. Nicolaou K. C., Ajito K., Patron A. P., Khatuya H., Richter P. K., Bertinato P.: J. Am. Chem. Soc. 1996, 118, 3059. <https://doi.org/10.1021/ja954211t>
7a. Kato Y., Fusetani N., Matsunaga S., Hashimoto K., Sakai R., Higa T., Kashman Y.: Tetrahedron Lett. 1987, 28, 6225. <https://doi.org/10.1016/S0040-4039(00)61853-1>
7b. Tanaka J., Higa T., Kobayashi M., Kitagawa I.: Chem. Pharm. Bull. 1990, 38, 2967. <https://doi.org/10.1248/cpb.38.2967>
8a. Hayakawa H., Miyashita M.: J. Chem. Soc., Perkin Trans. 1 1999, 3399. <https://doi.org/10.1039/a908342a>
8b. Hayakawa H., Iida K., Miyazawa M., Miyashita M.: Chem. Lett. 1999, 601. <https://doi.org/10.1246/cl.1999.601>
8c. Paterson I., Cumming J. G.: Tetrahedron Lett. 1992, 33, 2847. <https://doi.org/10.1016/S0040-4039(00)78876-9>
8d. Paterson I., Smith J. D.: J. Org. Chem. 1992, 57, 3261. <https://doi.org/10.1021/jo00038a002>
9a. Pettit G. R., Herald C. L., Cichacz Z. A., Gao F., Schmidt J. M., Boyd M. R., Christie N. D., Boettner F. E.: J. Chem. Soc., Chem. Commun. 1993, 1805. <https://doi.org/10.1039/c39930001805>
9b. Pettit G. R., Cichacz Z. A., Gao F., Herald C. L., Boyd M. R.: J. Chem. Soc., Chem. Commun. 1993, 1166. <https://doi.org/10.1039/c39930001166>
9c. Pettit G. R., Cichacz Z. A., Herald C. L., Gao F., Boyd M. R., Schmidt J. M., Hamel E., Bai R.: J. Chem. Soc., Chem. Commun. 1994, 1605. <https://doi.org/10.1039/c39940001605>
9d. Pettit G. R., Cichacz Z. A., Gao F., Herald C. L., Boyd M. R., Schmidt J. M. Hooper J. N. A.: J. Org. Chem. 1993, 58, 1302. <https://doi.org/10.1021/jo00058a004>
9e. Pettit G. R., Herald C. L., Cichacz Z. A., Gao F., Boyd M. R., Christie N. D., Schmidt J. M.: Nat. Prod. Lett. 1993, 3, 239. <https://doi.org/10.1080/10575639308043871>
9f. Pettit G. R.: Pure Appl. Chem. 1994, 66, 2271. <https://doi.org/10.1351/pac199466102271>
9g. Bai R., Taylor G. F., Cichacz Z. A., Herald C. L., Kepler J. A., Pettit G. R., Hamel E.: Biochemistry 1995, 34, 9714. <https://doi.org/10.1021/bi00030a009>
10. Fusetani N., Shinoda K., Matsunaga S.: J. Am. Chem. Soc. 1993, 115, 3977. <https://doi.org/10.1021/ja00063a017>
11a. Kobayashi M., Aoki S., Sakai H., Kihara N., Sasaki T., Kitagawa I.: Chem. Pharm. Bull. 1993, 41, 989. <https://doi.org/10.1248/cpb.41.989>
11b. Kobayashi M., Aoki S., Sakai H., Kawazoe K., Kihara N., Sasaki T., Kitagawa I.: Tetrahedron Lett. 1993, 34, 2795. <https://doi.org/10.1016/S0040-4039(00)73564-7>
11c. Kobayashi M., Aoki S., Kitagawa I.: Tetrahedron Lett. 1994, 35, 1243. <https://doi.org/10.1016/0040-4039(94)88034-4>
11d. Kobayashi M., Aoki S., Gato K., Kitagawa I.: Chem. Pharm. Bull. 1996, 44, 2142. <https://doi.org/10.1248/cpb.44.2142>
12. Isolation: Albers-Schönberg G., Arison B. H., Chabale J. C., Douglas A. W., Eskola P., Fisher M. H., Lusi A., Mrozik H., Smith J. L., Tolman R. L.: J. Am. Chem. Soc. 1981, 103, 4216. <https://doi.org/10.1021/ja00404a040>
13a. Williams D. R., Barner B. A., Nishitani K., Phillips J. G.: J. Am. Chem. Soc. 1982, 104, 4708. <https://doi.org/10.1021/ja00381a049>
13b. Crimmins M. T., Hollis W. G., Jr., O’Mahony R.: Stud. Nat. Prod. Chem. 1988, 1, 435.
13c. White J. D., Bolton G. L., Anura P., Fox C. M. J., Hiner R. N., Jackson R. W., Sakuma K., Warrier U. S.: J. Am. Chem. Soc. 1995, 117, 1908. <https://doi.org/10.1021/ja00112a006>
13d. Ford M. J., Knight J. G., Ley S. V., Vile S.: Synlett 1990, 331. <https://doi.org/10.1055/s-1990-21081>
13e. Armstrong A., Ley S. V., Madin A., Mukherjee S.: Synlett 1990, 328. <https://doi.org/10.1055/s-1990-21080>
13f. Ley S. V., Armstrong A., Diez-Martin D., Ford M. J., Grice P., Knight J. G., Kolb H. C., Madin A., Marby C. A.: J. Chem. Soc., Perkin Trans. 1 1991, 667. <https://doi.org/10.1039/p19910000667>
13g. Danishefsky S. J., Armistead D. M., Wincott F. E., Selnick H. G., Hungate R.: J. Am. Chem. Soc. 1989, 111, 2967. <https://doi.org/10.1021/ja00190a034>
14a. Carter G. T.: J. Org. Chem. 1986, 51, 4264. <https://doi.org/10.1021/jo00372a030>
14b. Kobayashi K., Nishino C., Ohya J., Sato S., Mikawa T., Shiobara Y., Kodama M., Nishimoto N.: J. Antibiot. 1987, 40, 1053. <https://doi.org/10.7164/antibiotics.40.1053>
15. Synthesis of the C factor: Panek J. S., Jain N. F.: J. Org. Chem. 2001, 66, 2747. <https://doi.org/10.1021/jo001767c>
16. Isolation: Kihara T., Kusakabe N., Nakamura G., Sakurai T., Isono K.: J. Antibiot. 1981, 34, 1073. <https://doi.org/10.7164/antibiotics.34.1073>
17. Synthesis: Evans D. A., Kaldor S. W., Jones T. K., Clardy J., Stout T. J.: J. Am. Chem. Soc. 1990, 112, 7001. <https://doi.org/10.1021/ja00175a038>
18a. Thompson R. Q., Hoehn M. M., Higgens C. E.: Antimicrob. Agents Chemother. 1961, 474.
18b. Wuthier D., Keller-Schierlein W., Whal B.: Helv. Chim. Acta 1984, 67, 1208. <https://doi.org/10.1002/hlca.19840670506>
18c. Arnoux B., Garcia-Alvarez M. C., Marazano C., Das B. C., Pascard C., Merienne C., Staron T.: J. Chem. Soc., Chem. Commun. 1978, 318. <https://doi.org/10.1039/c39780000318>
19a. ref.15.
19b. White J. D., Hanselmann R., Jackson R. W., Porter W. J., Ohba Y., Tiller T., Wang S.: J. Org. Chem. 2001, 66, 5217. <https://doi.org/10.1021/jo0104429>
20a. Smith III A. B., Lin Q., Nakayama K., Boldi A. M., Brook C. S., McBriar M. D., Moser W. H., Sobukawa M., Zhuang L.: Tetrahedron Lett. 1997, 38, 8675. <https://doi.org/10.1016/S0040-4039(97)10501-9>
20b. Claffey M. M., Heathcock C. H.: J. Org. Chem. 1996, 61, 7646. <https://doi.org/10.1021/jo9613904>
20c. Claffey M. M., Hayes C. J., Heathcock C. H.: J. Org. Chem. 1999, 64, 8267. <https://doi.org/10.1021/jo9910987>
20d. Paterson I., Oballa R. M., Norcross R. D.: Tetrahedron Lett. 1996, 37, 8581. <https://doi.org/10.1016/0040-4039(96)01961-2>
20e. Paterson I., Oballa R. M.: Tetrahedron Lett. 1997, 38, 8241. <https://doi.org/10.1016/S0040-4039(97)10126-5>
20f. Paterson I., Wallace D. J., Oballa R. M.: Tetrahedron Lett. 1998, 39, 8545. <https://doi.org/10.1016/S0040-4039(98)01908-X>
20g. Paquette L. A., Zuev D.: Tetrahedron Lett. 1997, 38, 5115. <https://doi.org/10.1016/S0040-4039(97)01140-4>
20h. Zuev D., Paquette L. A.: Org. Lett. 2000, 2, 679. <https://doi.org/10.1021/ol0000049>
20i. Crimmins M. T., Washburn D. G.: Tetrahedron Lett. 1998, 39, 7487. <https://doi.org/10.1016/S0040-4039(98)01629-3>
20j. Terauchi T., Nakata M.: Tetrahedron Lett. 1998, 39, 3795. <https://doi.org/10.1016/S0040-4039(98)00619-4>
20k. Barrett A. G. M., Braddock D. C., de Koning P. D., White A. J. P., Williams D. J.: J. Org. Chem. 2000, 65, 375. <https://doi.org/10.1021/jo991205x>
20l. Holson E. B., Roush W. R.: Org. Lett. 2002, 4, 3723. <https://doi.org/10.1021/ol026688x>
20m. Terauchi T., Terauchi T., Sato I., Shoji W., Tsukada T., Tsunoda T. Kanoh N., Nakata M.: Tetrahedron Lett. 2003, 44, 7741. <https://doi.org/10.1016/j.tetlet.2003.08.082>
21a. Smith III A. B., Zhuang L., Brook C. S., Lin Q., Moser W. H., Trout R. E. L., Boldi A. M.: Tetrahedron Lett. 1997, 38, 8671. <https://doi.org/10.1016/S0040-4039(97)10500-7>
21b. Hayes C. J., Heathcock C. H.: J. Org. Chem. 1997, 62, 2678. <https://doi.org/10.1021/jo9701703>
21c. Paquette L. A., Braun A.: Tetrahedron Lett. 1997, 38, 5119. <https://doi.org/10.1016/S0040-4039(97)01141-6>
21d. Paterson I., Wallace D. J., Gibson K. R.: Tetrahedron Lett. 1997, 38, 8911. <https://doi.org/10.1016/S0040-4039(97)10483-X>
21e. Zemribo R., Mead K. T.: Tetrahedron Lett. 1998, 39, 3895. <https://doi.org/10.1016/S0040-4039(98)00686-8>
21f. Crimmins M. T., Katz J. D.: Org. Lett. 2000, 2, 957. <https://doi.org/10.1021/ol005605e>
21g. Terauchi T., Terauchi T., Sato I., Tsukada T., Kanoh N., Nakata M.: Tetrahedron Lett. 2000, 41, 2649. <https://doi.org/10.1016/S0040-4039(00)00237-9>
21h. Jacobs M. F., Glenn M. P., McGrath M. J., Zhang H., Brereton I., Kitching W.: ARKIVOC 2001, 114. <https://doi.org/10.3998/ark.5550190.0002.710>
21i. Paterson I., Coster M. J.: Tetrahedron Lett. 2002, 43, 3285. <https://doi.org/10.1016/S0040-4039(02)00527-0>
21j. Holson E. B., Roush W. R.: Org. Lett. 2002, 4, 3719. <https://doi.org/10.1021/ol0266875>
21k. Gaunt M. J., Hook D. F., Ley S. V.: Org. Lett. 2003, 5, 4815. <https://doi.org/10.1021/ol035848h>
21l. Gaunt M. J., Jessiman A. S., Orsini P., Tanner H. R., Hook D. F., Ley S. V.: Org. Lett. 2003, 5, 4819. <https://doi.org/10.1021/ol035849+>
21m. Lau C. K., Crumpler S., Macfarlane K., Lee F., Berthelette C.: Synlett 2004, 2281. <https://doi.org/10.1055/s-2004-831334>
21n. Crimmins M. T., Smith A. R.: Org. Lett. 2006, 8, 1003. <https://doi.org/10.1021/ol0601601>
22b. Hermitage S. A., Roberts S. M., Watson D. J.: Tetrahedron Lett. 1998, 39, 3567. <https://doi.org/10.1016/S0040-4039(98)00550-4>
22c. Kary P. D., Roberts S. M., Watson D. J.: Tetrahedron: Asymmetry 1999, 10, 213. <https://doi.org/10.1016/S0957-4166(98)00486-8>
22d. Paterson I., Keown L. E.: Tetrahedron Lett. 1997, 38, 5727. <https://doi.org/10.1016/S0040-4039(97)01257-4>
22e. Micalizio G. C., Roush W. R.: Tetrahedron Lett. 1999, 40, 3351. <https://doi.org/10.1016/S0040-4039(99)00464-5>
22f. Fernandez-Megia E., Gourlaouen N., Ley S. V., Rowlands G. J.: Synlett 1998, 991. <https://doi.org/10.1055/s-1998-3140>
22g. Lemaire-Audoire S., Vogel. P.: Tetrahedron Lett. 1998, 39, 1345. <https://doi.org/10.1016/S0040-4039(97)10817-6>
22h. Lemaire-Audoire S., Vogel P.: J. Org. Chem. 2000, 65, 3346. <https://doi.org/10.1021/jo991642b>
22i. Dunkel R., Treu J., Hoffmann H. M. R.: Tetrahedron: Asymmetry 1999, 10, 1539. <https://doi.org/10.1016/S0957-4166(99)00148-2>
22j. Kim H., Hoffmann H. M. R.: Eur. J. Org. Chem. 2000, 2195. <https://doi.org/10.1002/1099-0690(200006)2000:12<2195::AID-EJOC2195>3.0.CO;2-C>
22k. Dunkel R., Hoffmann H. M. R.: Tetrahedron 1999, 55, 8385. <https://doi.org/10.1016/S0040-4020(99)00460-3>
22l. Anderson J. C., McDermott B. P.: Tetrahedron Lett. 1999, 40, 7135. <https://doi.org/10.1016/S0040-4039(99)01481-1>
22m. Samadi M., Munoz-Letelier C., Poigny S., Guyot M.: Tetrahedron Lett. 2000, 41, 3349. <https://doi.org/10.1016/S0040-4039(00)00383-X>
22n. Wallace G. A., Scott R. W., Heathcock C. H.: J. Org. Chem. 2000, 65, 4145. <https://doi.org/10.1021/jo0002801>
22o. Evans D. A., Trotter B. W., Côté B.: Tetrahedron Lett. 1998, 39, 1709. <https://doi.org/10.1016/S0040-4039(98)00138-5>
22p. Kary P. D., Roberts S. M.: Tetrahedron: Asymmetry 1999, 10, 217. <https://doi.org/10.1016/S0957-4166(99)00011-7>
22q. Ott G. R., Heathcock C. H.: Org. Lett. 1999, 1, 1475. <https://doi.org/10.1021/ol990281j>
22r. Anderson J. C., McDermott B. P., Griffin E. J.: Tetrahedron 2000, 56, 8747. <https://doi.org/10.1016/S0040-4020(00)00804-8>
22s. Crimmins M. T., Katz J. D., McAfee L. C., Tabet E. A., Kirincich S. J.: Org. Lett. 2001, 3, 949. <https://doi.org/10.1021/ol015652m>
22t. Micalizio G. C., Pinchuk A. N., Roush W. R.: J. Org. Chem. 2000, 65, 8730. <https://doi.org/10.1021/jo001236o>
22u. Kim H., Hoffman H. M. R.: Eur. J. Org. Chem. 2000, 2195. <https://doi.org/10.1002/1099-0690(200006)2000:12<2195::AID-EJOC2195>3.0.CO;2-C>
22v. Terauchi T., Tanaka T., Terauchi T., Masakata M., Kimijima K., Sato I., Shoji W., Nakamura Y., Tsukuda T., Tsunoda T., Hayashi G., Kanoh N., Nakata M.: Tetrahedron Lett. 2003, 44, 7747. <https://doi.org/10.1016/j.tetlet.2003.08.083>
22w. Ciblat S., Kim J., Stewart C. A., Wang J., Forgione P., Clyne D., Paquette L. A.: Org. Lett. 2007, 9, 719. <https://doi.org/10.1021/ol063083i>
22a. Smith III A. B., Zhuang L., Brook C. S., Boldi A. M., McBriar M. D., Moser W. H., Murase N., Nakayama K., Verhoest P. R., Lin Q.: Tetrahedron Lett. 1997, 38, 8667. <https://doi.org/10.1016/S0040-4039(97)10499-3>
23a. For an overview of the early synthetic studies in the spongistatin area, see Pietruszka J.: Angew. Chem. Int. Ed. 1998, 37, 2629. <https://doi.org/10.1002/(SICI)1521-3773(19981016)37:19<2629::AID-ANIE2629>3.0.CO;2-A>
23b. For a more recent review, consult Yeung K.-S., Paterson I.: Chem. Rev. 2005, 105, 4237. <https://doi.org/10.1021/cr040614c>
24. Evans D. A., Coleman P. J., Dias L. C.: Angew. Chem., Int. Ed. Engl. 1997, 36, 2738. <https://doi.org/10.1002/anie.199727381>
24b. Evans D. A., Trotter B. W., Côté B., Coleman P. J.: Angew. Chem., Int. Ed. Engl. 1997, 36, 2741. <https://doi.org/10.1002/anie.199727411>
24c. Evans D. A., Trotter B. W., Côté B., Coleman P. J., Dias L. C., Tyler A. N.: Angew. Chem., Int. Ed. Engl. 1997, 36, 2744. <https://doi.org/10.1002/anie.199727441>
24d. Evans D. A., Trotter B. W., Coleman P. J., Côté B., Dias L. C., Rajapakse H. A., Tyler A. N.: Tetrahedron 1999, 55, 8671. <https://doi.org/10.1016/S0040-4020(99)00438-X>
25. Guo J., Duffy K. J., Stevens K. L., Dalko P. I., Roth R. M., Hayward M. H., Kishi Y.: Angew. Chem. Int. Ed. 1998, 37, 187. <https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<187::AID-ANIE187>3.0.CO;2-D>
25b. Hayward M. H., Roth R. M., Duffy K. J., Dalko P. I., Stevens K. L., Guo J., Kishi Y.: Angew. Chem. Int. Ed. 1998, 37, 192. <https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<190::AID-ANIE190>3.0.CO;2-0>
26e. Hubbs J. L., Heathcock C. H.: J. Am. Chem. Soc. 2003, 125, 12836. <https://doi.org/10.1021/ja030316h>
26f. Heathcock C. H., McLaughlin M., Medina J., Hubbs J. L., Wallace G. A., Scott R., Claffey M. M., Hayes C. J., Ott G. R.: J. Am. Chem. Soc. 2003, 125, 12844. <https://doi.org/10.1021/ja030317+>
26g. Terauchi T., Terauchi T., Sato I., Shoji W., Tsukada T., Tsunoda T., Kanoh N., Nakata M.: Tetrahedron Lett. 2003, 44, 7741. <https://doi.org/10.1016/j.tetlet.2003.08.082>
26a. Smith III A. B., Doughty V. A., Lin Q., Zhuang L., McBriar M. D., Boldi A. M., Moser W. H., Murase N., Nakayama K., Sobukawa M.: Angew. Chem. Int. Ed. 2001, 40, 191. <https://doi.org/10.1002/1521-3773(20010105)40:1<191::AID-ANIE191>3.0.CO;2-C>
26b. Smith III A. B., Lin Q., Doughty V. A., Zhuang L., McBriar M. D., Kerns J. K., Brook C. S., Murase N., Nakayama K.: Angew. Chem. Int. Ed. 2001, 40, 196. <https://doi.org/10.1002/1521-3773(20010105)40:1<196::AID-ANIE196>3.0.CO;2-T>
26c. Smith III A. B., Doughty V. A., Sfouggatakis C., Bennett C. S., Koyanagi J., Takeuchi M.: Org. Lett. 2002, 4, 783. <https://doi.org/10.1021/ol017273z>
26d. Smith III A. B., Zhu W., Shirakami S., Sfouggatakis C., Doughty V. A., Bennett C. S., Sakamoto Y.: Org. Lett. 2003, 5, 761. <https://doi.org/10.1021/ol034037a>
27a. Paterson I., Chen D. Y.-K., Coster M. J., Aceua J. L., Bach J., Gibson K. R., Keown L. E., Oballa R. M., Trieselmann T., Wallace D. J., Hodgson A. P., Norcross R. D.: Angew. Chem. Int. Ed. 2001, 40, 4055. <https://doi.org/10.1002/1521-3773(20011105)40:21<4055::AID-ANIE4055>3.0.CO;2-H>
27b. Ball M., Gaunt M. J., Hook D. F., Jessiman A. S., Kawahara S., Orsini P., Scolaro A., Talbot A. C., Tanner H. R., Yamanoi S., Ley S. V.: Angew. Chem. Int. Ed. 2005, 44, 5433. <https://doi.org/10.1002/anie.200502008>
27c. Crimmins M. T., Katz J. D., Washburn D. G., Allwein S. P., McAtee L. F.: J. Am. Chem. Soc. 2002, 124, 5661. <https://doi.org/10.1021/ja0262683>
28. Nagao Y., Hagiwara Y., Kumagai T., Ochiai M., Inoue T., Hashimoto K., Fujita E.: J. Org. Chem. 1986, 51, 2391. <https://doi.org/10.1021/jo00362a047>
29. Nahm S., Weinreb S. M.: Tetrahedron Lett. 1981, 22, 3815. <https://doi.org/10.1016/S0040-4039(01)91316-4>
30. Fujita E., Nagao Y.: Adv. Heterocycl. Chem. 1989, 45, 1. <https://doi.org/10.1016/S0065-2725(08)60328-1>
31. Frick J. A., Klassen J. B., Bathe A. B., Abramson J. M., Rapoport H.: Synthesis 1992, 621. <https://doi.org/10.1055/s-1992-26176>
32. Smith III A. B., Boldi A. M.: J. Am. Chem. Soc. 1997, 119, 6925. <https://doi.org/10.1021/ja970371o>
33. Schmid C. R., Bryant J. D., Dowlatzedah M., Phillips J. L., Prather D. E., Renee D. S., Sear N. L., Vianco C. S.: J. Org. Chem. 1991, 56, 4056. <https://doi.org/10.1021/jo00012a049>
34. Paterson I., Gibson K. R., Oballa R. M.: Tetrahedron Lett. 1996, 37, 8585. <https://doi.org/10.1016/0040-4039(96)01962-4>
35. Consult footnote 9 of ref.20g.
36. Nambiar K. P., Mitra A.: Tetrahedron Lett. 1994, 35, 3033. <https://doi.org/10.1016/S0040-4039(00)76820-1>
37. Zuev D.: Ph.D. Thesis. The Ohio State University, 2000.
38. Lipshutz B. H., Pegram J. J.: Tetrahedron Lett. 1980, 21, 3343. <https://doi.org/10.1016/S0040-4039(00)78684-9>
39. Griffith W. P., Ley S. V.: Aldrichimica Acta 1990, 23, 13.
40. Corey E. J., Cho H., Rücker C., Hua D. H.: Tetrahedron Lett. 1981, 22, 3455. <https://doi.org/10.1016/S0040-4039(01)81930-4>
41. See footnote 18 of ref.26a.
42a. Gros P., Hansen P., Caubere P.: Tetrahedron 1996, 52, 15147. <https://doi.org/10.1016/S0040-4020(96)00972-6>
42b. Bulman Page P. C., Prodger J. C., Hursthouse M. B., Mazid M.: J. Chem. Soc., Perkin Trans. 1 1990, 167. <https://doi.org/10.1039/p19900000167>
42c. Smith III A. B., Lupo A. T., Jr., Ohba M., Chen K.: J. Am. Chem. Soc. 1989, 111, 6648. <https://doi.org/10.1021/ja00199a026>
43a. Fujita E., Nagao Y., Kaneko K.: Chem. Pharm. Bull. 1976, 24, 1115. <https://doi.org/10.1248/cpb.24.1115>
43b. Fujita E., Nagao Y., Kaneko K.: Chem. Pharm. Bull. 1978, 26, 3743. <https://doi.org/10.1248/cpb.26.3743>
44. Mukaiyama T.: Org. React. 1982, 28, 203.
45. Czernecki S., Georgoulis C., Provelenghiou C.: Tetrahedron Lett. 1976, 17, 3535. <https://doi.org/10.1016/S0040-4039(00)71351-7>
46. Henin F., Muzart J.: Synth. Commun. 1984, 14, 1355. <https://doi.org/10.1080/00397918408057675>
47. Mootoo D. R., Fraser-Reid B.: Tetrahedron 1990, 46, 185. <https://doi.org/10.1016/S0040-4020(01)97592-1>
48. Ruder S. M., Ronald R. C.: Tetrahedron Lett. 1987, 28, 135. <https://doi.org/10.1016/S0040-4039(00)95668-5>
49a. Van Rheenen V., Kelly R. C., Cha D. Y.: Tetrahedron Lett. 1976, 1973. <https://doi.org/10.1016/S0040-4039(00)78093-2>
49b. Van Rheenen V., Cha D. Y., Hartley W. M.: Org. Synth., Coll. Vol. VI 1988, 342.
50. Ireland R. E., Gleason J. L., Gegnas L. D., Highsmith T. K.: J. Org Chem. 1996, 61, 6856. <https://doi.org/10.1021/jo951646q>
51. Nagao Y., Hagiwara Y., Kumagai T., Ochiai M., Inoue T., Hashimoto K., Fujita E.: J. Org. Chem. 1986, 51, 2391. <https://doi.org/10.1021/jo00362a047>
52. Weinreb S. M., Folmer J. J. in: Encyclopedia of Reagents for Organic Synthesis (L. A. Paquette, Ed.), Vol. 3, p. 2083. John Wiley and Sons, Inc., Chichester 1995.
53. Hanessian S., Lavallee P.: Can. J. Chem. 1975, 53, 2975. <https://doi.org/10.1139/v75-419>
54. Denniff P., Whiting D. A.: J. Chem. Soc., Chem. Commun. 1976, 712. <https://doi.org/10.1039/c39760000712>
55. Chiang Y., Eliason R., Guo G. H.-X., Kresge A. J.: Can. J. Chem. 1994, 72, 1632. <https://doi.org/10.1139/v94-205>
56. Walkup R. D., Kane R. R., Boatman P. D., Jr., Cunningham R. T.: Tetrahedron Lett. 1990, 31, 7587. <https://doi.org/10.1016/S0040-4039(00)97305-2>
57. Yoon N. M., Gyoung Y. S.: J. Org. Chem. 1985, 50, 2443. <https://doi.org/10.1021/jo00214a009>
58. Evans D. A., Coleman P. J., Côté B.: J. Org. Chem. 1997, 62, 788. <https://doi.org/10.1021/jo962417m>
59. Mori Y., Asai M., Okumura A., Furukawa H.: Tetrahedron 1995, 51, 5299. <https://doi.org/10.1016/0040-4020(95)00214-S>
60. Evans D. A., Duffy J. L., Dart M. J.: Tetrahedron Lett. 1994, 35, 8537. <https://doi.org/10.1016/S0040-4039(00)78430-9>
61. Rychnovsky S. D., Hoye R. C.: J. Am. Chem. Soc. 1994, 116, 1753. <https://doi.org/10.1021/ja00084a017>
62. Blanchette M. A., Malamas M. S., Nantz M. H., Roberts J. C., Somfai P., Whritenour D. C., Masamune S.: J. Org. Chem. 1989, 54, 2817. <https://doi.org/10.1021/jo00273a009>
63. Seebach D., Misslitz U., Uhlmann P.: Angew. Chem., Int. Ed. Engl. 1989, 28, 472. <https://doi.org/10.1002/anie.198904721>
64. Evans D. A., Dart M. J., Duffy J. L., Yang M. G.: J. Am. Chem. Soc. 1996, 118, 4322. <https://doi.org/10.1021/ja953901u>
65. Maurer K. W., Armstrong R. W.: J. Org. Chem. 1996, 61, 3106. <https://doi.org/10.1021/jo952083l>
66. Heathcock C. H., Young S. D., Hagen J. P., Pilli R., Badertscher U.: J. Org. Chem. 1985, 50, 2095. <https://doi.org/10.1021/jo00212a018>
67. Ogilvie K. K., Beaucage S. L., Entwistle D. W., Thompson E. A., Quilliam M. A., Westmore J. B.: J. Carbohydr., Nucleosides, Nucleotides 1976, 3, 197.
68. Jung M. E., Kaas S. M.: Tetrahedron Lett. 1989, 30, 641. <https://doi.org/10.1016/S0040-4039(01)80270-7>
69. Matsumori N., Kaneno D., Murata M., Nakamura H., Tachibana K.: J. Org. Chem. 1999, 64, 866. <https://doi.org/10.1021/jo981810k>
70. Nagao Y., Kumagai T., Nagase Y., Tamai S., Inoue Y., Shiro M.: J. Org. Chem. 1992, 57, 4232. <https://doi.org/10.1021/jo00041a031>
71. Masamune S., Ellingboe J. W., Choy W.: J. Am. Chem. Soc. 1982, 104, 5526. <https://doi.org/10.1021/ja00384a062>
72. Tebbe F. N., Parshall G. W., Reddy G. S.: J. Am. Chem. Soc. 1978, 100, 3611. <https://doi.org/10.1021/ja00479a061>
73. Pine S. H.: Org. React. 1993, 43, 1.
74. Lombardo L.: Org. Synth., Collect. Vol. VIII 1993, 386.
75. Wittig G., Schöllkopf U.: Org. Synth., Coll. Vol. V 1973, 751.
76a. Nysted L. N.: U.S. 3,865,848 (1975), Chem. Abstr. 1975, 83, 104069.
76b. Watson A. T., Park K., Wiemer D. F.: J. Org. Chem. 1995, 60, 5102. <https://doi.org/10.1021/jo00121a030>
76c. Tochtermann W., Bruhn S., Meints M., Wolff C., Peters E.-M., Peters K., von Schnering H. G.: Tetrahedron 1995, 51, 1623. <https://doi.org/10.1016/0040-4020(94)01038-2>
76d. Anderson J. C., Pearson D. J.: J. Chem. Soc., Perkin Trans. 1 1998, 2023. <https://doi.org/10.1039/a802413h>
76e. Tanaka M., Imai M., Fujio M., Sakamoto E., Takahashi M., Eto-Kato Y., Wu X. M., Funakoshi K., Sakai K., Suemune H.: J. Org. Chem. 2000, 65, 5806. <https://doi.org/10.1021/jo000781m>
77. Tour J. M., Bedworth P. V., Wu R.: Tetrahedron Lett. 1989, 30, 3927. <https://doi.org/10.1016/S0040-4039(00)99286-4>
78a. Peterson D. J.: J. Org. Chem. 1968, 33, 780. <https://doi.org/10.1021/jo01266a061>
78b. Johnson C. R., Tait B. D.: J. Org. Chem. 1987, 52, 281. <https://doi.org/10.1021/jo00378a024>
79. Bandzouzi A., Lakhrissi M., Chapleur Y.: J. Chem. Soc., Perkin Trans. 1 1992, 1471. <https://doi.org/10.1039/p19920001471>
80. Paquette L. A., O’Neil S. V., Guillo N., Zeng Q., Young D. G.: Synlett 1999, 1857. <https://doi.org/10.1055/s-1999-2959>
81. Cho I. H., Paquette L. A.: Heterocycles 2002, 58, 43.
82. Hanessian S., Girard C., Chiara J. L.: Tetrahedron Lett. 1992, 33, 573. <https://doi.org/10.1016/S0040-4039(00)92313-X>
83. In carbanions derived from glucopyranyl sulfones, the lone pair preferentially adopts an equatorial disposition in a display of the “anti anomeric effect”: Beau J.-M., Sinay P.: Tetrahedron Lett. 1985, 26, 6185. <https://doi.org/10.1016/S0040-4039(00)95048-2>
84a. Brown H. C., Ramachandran P. V.: Pure Appl. Chem. 1991, 63, 307. <https://doi.org/10.1351/pac199163030307>
84b. Jadhav P. K., Bhat K. S., Perumal P. T., Brown H. C.: J. Org. Chem. 1986, 51, 432. <https://doi.org/10.1021/jo00354a003>
84c. Racherla U. S., Brown H. C.: J. Org. Chem. 1991, 56, 401. <https://doi.org/10.1021/jo00001a072>
84d. Brown H. C., Bhat K. S.: J. Am. Chem. Soc. 1986, 108, 5919. <https://doi.org/10.1021/ja00279a042>
85. Bartlett P. A., Meadows J. D., Brown E. G., Morimoto A., Jernstedt K. K.: J. Org. Chem. 1982, 47, 4013. <https://doi.org/10.1021/jo00142a002>
86. Duan J. J.-W., Sprengeler P. A., Smith III A. B.: Tetrahedron Lett. 1992, 33, 6439. <https://doi.org/10.1016/S0040-4039(00)79009-5>
87. Consult the application reported in: Smith III A. B., Doughty V. A., Sfouggatakis C., Bennett C. S., Koyanagi J., Takeuchi M.: Org. Lett. 2002, 4, 783. <https://doi.org/10.1021/ol017273z>
88. McDougal P., Rico J. G., Oh Y.-I., Condon B. D.: J. Org. Chem. 1986, 51, 3388. <https://doi.org/10.1021/jo00367a033>
89. Mancuso A. J., Huang S.-L., Swern D.: J. Org. Chem. 1978, 43, 2480. <https://doi.org/10.1021/jo00406a041>
90a. Gage J. R., Evans D. A.: Org. Synth. 1990, 68, 77.
90b. Gage J. R., Evans D. A.: Org. Synth. 1990, 68, 83.
91. Inoue T., Mukaiyama T.: Bull. Chem. Soc. Jpn. 1980, 53, 174. <https://doi.org/10.1246/bcsj.53.174>
92. Frigerio M., Santagostino M.: Tetrahedron Lett. 1994, 35, 8019. <https://doi.org/10.1016/0040-4039(94)80038-3>
93a. Evans D. A., Carter P. H., Carreira E. M., Charette A. B., Prunet J. A., Lautens M.: J. Am. Chem. Soc. 1999, 121, 7540. <https://doi.org/10.1021/ja990860j>
93b. Sasaki S., Hamada Y., Shioiri T.: Tetrahedron Lett. 1999, 40, 3187. <https://doi.org/10.1016/S0040-4039(99)00411-6>
93c. Ferezou J.-P., Julia M., Li Y., Liu L. W., Pancrazi A., Porteu F.: Bull. Soc. Chim. Fr. 1994, 131, 865.
93d. Ferezou J. P., Julia M., Li Y., Liu L. W.: Synlett 1991, 53. <https://doi.org/10.1055/s-1991-20627>
93e. Buchwald S. L., Nielsen R. B., Dewan J. C.: Organometallics 1989, 8, 1593. <https://doi.org/10.1021/om00109a002>
94a. Burke S. D., Piscopio A. D., Kort M. E., Matulenko M. A., Parker M. H., Armistead D. M., Shankaran K.: J. Org. Chem. 1994, 54, 332. <https://doi.org/10.1021/jo00081a010>
94b. Sasaki S., Hamada Y., Shioiri T.: Tetrahedron Lett. 1999, 40, 3187. <https://doi.org/10.1016/S0040-4039(99)00411-6>
94c. Buchanan J. L., Mani U. N., Plake H. R., Holt D. A.: Tetrahedron Lett. 1999, 40, 3985. <https://doi.org/10.1016/S0040-4039(99)00659-0>
95a. Parikh J. R., Doering W. v. E.: J. Am. Chem. Soc. 1967, 89, 5505. <https://doi.org/10.1021/ja00997a067>
95b. Review: Tidwell T. T.: Org. React. 1990, 39, 297.
96a. Mazéas D., Skrydstrup T., Beau J.-M.: Angew. Chem., Int. Ed. Engl. 1995, 34, 909. <https://doi.org/10.1002/anie.199509091>
96b. Jarreton O., Skrydstrup T., Beau J.-M.: Tetrahedron Lett. 1997, 36, 303.
96c. Krintel S. L., Jiménez-Barbero J., Skrydstrup T.: Tetrahedron Lett. 1999, 40, 7565. <https://doi.org/10.1016/S0040-4039(99)01604-4>
96d. Miquel N., Doisneau G., Beau J.-M.: Angew. Chem. Int. Ed. 2000, 39, 4111. <https://doi.org/10.1002/1521-3773(20001117)39:22<4111::AID-ANIE4111>3.0.CO;2-C>
97. Schmidt R. R.: Angew. Chem., Int. Ed. Engl. 1986, 25, 212. <https://doi.org/10.1002/anie.198602121>
98. Urban D., Skrydstrup T., Beau J.-M.: J. Org. Chem. 1998, 63, 2507. <https://doi.org/10.1021/jo971727h>
99a. Stewart C. A., Peng X., Paquette L. A.: Synthesis 2008, 433.
99b. Nwoye E. O., Dudley G. B.: Chem. Commun. 2007, 1436. <https://doi.org/10.1039/b617926f>
100a. Miyaura N., Suzuki A.: Chem. Ber. 1995, 95, 2457.
100b. Suzuki A.: J. Organomet. Chem. 1999, 576, 147. <https://doi.org/10.1016/S0022-328X(98)01055-9>
101. Miyaura N., Ishiyama T., Ishikawa M., Suzuki A.: Tetrahedron Lett. 1986, 27, 6369. <https://doi.org/10.1016/S0040-4039(00)87811-9>
102. Chemler S. R., Trauner D., Danishefsky S. J.: Angew. Chem. Int. Ed. 2001, 40, 4544. <https://doi.org/10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N>
103a. Vedejs E.: J. Am. Chem. Soc. 1974, 96, 5944. <https://doi.org/10.1021/ja00825a047>
103b. Vedejs E., Larsen S.: Org. Synth. 1985, 64, 127.
104. Davis F. A., Sherppard A. C.: Tetrahedron 1989, 45, 5703. <https://doi.org/10.1016/S0040-4020(01)89102-X>
105a. Williams D. R., Robinson L. A., Amato G. S., Osterhout M. H.: J. Org. Chem. 1992, 57, 3740. <https://doi.org/10.1021/jo00039a047>
105b. Williams D. R., Coleman P. J., Nevill C. R., Robinson L. A.: Tetrahedron Lett. 1993, 34, 7895. <https://doi.org/10.1016/S0040-4039(00)61504-6>
106a. Lindgren B. O., Nilsson T.: Acta Chem. Scand. 1973, 27, 888. <https://doi.org/10.3891/acta.chem.scand.27-0888>
106b. Colombo L., Gennari C., Santandrea M., Narisano E., Scolastico C.: J. Chem. Soc., Perkin Trans. 1 1980, 136. <https://doi.org/10.1039/p19800000136>
106c. Kraus G. A., Roth B.: J. Org. Chem. 1980, 45, 4825. <https://doi.org/10.1021/jo01312a004>
107. Devos A., Rémion J., Frisque-Hesbain A.-M., Colens A., Ghosez L.: Chem. Commun. 1979,1150.
108a. Boyle F. T.: PCT Int. Appl. 1995, WO 94-GB2039.
108b. Barker A. J., Boyle F. T., Hennequin L. F. A.: PCT Int. Appl. 1994, GB 93-20077.
109. Luche J.-L.: J. Am. Chem. Soc. 1978, 100, 2226. <https://doi.org/10.1021/ja00475a040>
110. Uenishi J.-I., Beau J.-M., Armstrong R. W., Kishi Y.: J. Am. Chem. Soc. 1987, 109, 4756. <https://doi.org/10.1021/ja00249a069>
111. MacMillan D. W. C., Overman L. E.: J. Am. Chem. Soc. 1995, 117, 10391. <https://doi.org/10.1021/ja00146a028>
112. Hara S., Dojo H., Takinami S., Suzuki A.: Tetrahedron Lett. 1983, 24, 731. <https://doi.org/10.1016/S0040-4039(00)81511-7>
113. Yi X.-H., Meng Y., Li C.-J.: Tetrahedron Lett. 1997, 38, 4731. <https://doi.org/10.1016/S0040-4039(97)01023-X>
114. Arhart R. J., Martin J. C.: J. Am. Chem. Soc. 1972, 94, 5003. <https://doi.org/10.1021/ja00769a036>
115. Thompson C. F., Jamison T. J., Jacobsen E. N.: J. Am. Chem. Soc. 2001, 123, 9974. <https://doi.org/10.1021/ja016615t>
116. Rajan Babu T. V., Reddy G. S.: J. Org. Chem. 1986, 51, 5458. <https://doi.org/10.1021/jo00376a088>
117. Johns B. A., Pan Y. T., Elbein A. D., Johnson C. R.: J. Am. Chem. Soc. 1997, 119, 4856. <https://doi.org/10.1021/ja9642929>
118. Preuss R., Jung K.-H., Schmidt R. R.: Liebigs Ann. Chem. 1992, 377. <https://doi.org/10.1002/jlac.199219920166>
119. Daly S. M., Armstrong R. W.: Tetrahedron Lett. 1989, 30, 5713. <https://doi.org/10.1016/S0040-4039(00)76178-8>
120. Loganis E. D., Chenard B. L.: Tetrahedron Lett. 1984, 25, 5831. <https://doi.org/10.1016/S0040-4039(01)81697-X>
121. Trost B. M., Lynch J., Renaut P., Steinman D. H.: J. Am. Chem. Soc. 1986, 108, 284. <https://doi.org/10.1021/ja00262a015>