Collect. Czech. Chem. Commun.
2009, 74, 1611-1622
https://doi.org/10.1135/cccc2009528
Published online 2009-12-22 08:15:44
Two-dimensional condensation of nucleobases: A comparative study of halogen derivatives of cytosine
Lukáš Fojta,*, Vladimír Vetterla and Thomas Doneuxb
a Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
b Chimie Analytique et Chimie des Interfaces, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium
References
1. Experientia 1965, 21, 9.
< V.: https://doi.org/10.1007/BF02136352>
2. Collect. Czech. Chem. Commun. 1966, 31, 2105.
< V.: https://doi.org/10.1135/cccc19662105>
3. Electrochim. Acta 2003, 48, 651.
< S., Simonaho S. P., Silvennoinen R., Vetterl V.: https://doi.org/10.1016/S0013-4686(02)00735-1>
4. Bioelectrochemistry 2002, 56, 43.
< S., Vetterl V.: https://doi.org/10.1016/S1567-5394(02)00053-1>
5. J. Electroanal. Chem. 2002, 536, 19.
< S., Vetterl V.: https://doi.org/10.1016/S0022-0728(02)01186-5>
6. Electrochim. Acta 1995, 40, 61.
< M., Hamelin A., Buess-Herman C.: https://doi.org/10.1016/0013-4686(94)00245-V>
7. Surf. Sci. 1995, 335, 281.
< M. H., Wandlowski T., Kolb D. M.: https://doi.org/10.1016/0039-6028(95)00445-9>
8. J. Phys. Chem. B 1997, 101, 754.
< J. B., Bunge E., Schröter C., Solomun T., Meyer H. J., Nichols R., Baumgärtel H.: https://doi.org/10.1021/jp961814y>
9. J. Electroanal. Chem. 1996, 404, 215.
< T., Lampner D., Lindsay S. M.: https://doi.org/10.1016/0022-0728(95)04235-0>
10. J. Electroanal. Chem. 1995, 386, 235.
M. H., Krznaric D., Kolb D. M.:
11. Mol. Biol. 1961, 3, 229.
< I. R. J.: https://doi.org/10.1016/S0022-2836(61)80063-6>
12. Mol. Biol. 1961, 3, 357.
< I. R. J.: https://doi.org/10.1016/S0022-2836(61)80073-9>
13. Biosystems 2001, 61, 69.
< S. J., Holm N. G., Petersen G. B.: https://doi.org/10.1016/S0303-2647(01)00130-7>
14. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 820.
< S. J., Cohn C. A., Heckl W. M., Holm N. G.: https://doi.org/10.1073/pnas.98.3.820>
15. Origins Life Evol. Biosphere 2002, 32, 35.
< S. J., Petersen G. B., Holm N. G.: https://doi.org/10.1023/A:1013957812213>
16. Chem. Rev. 1988, 88, 599.
< R.: https://doi.org/10.1021/cr00086a001>
17. J. Electroanal. Chem. 1994, 366, 265.
< R., Wandlowski T. J.: https://doi.org/10.1016/0022-0728(93)02932-8>
18. J. Colloid Interface Sci. 2002, 250, 201.
< S., Sangaranarayanan M. V.: https://doi.org/10.1006/jcis.2002.8301>
19. J. Electroanal. Chem. 1977, 85, 389.
< V., Christian S. D., Dryhurst G. J.: https://doi.org/10.1016/S0022-0728(77)80306-9>
20. J. Electroanal. Chem. 1979, 100, 111.
< V., Kim M. H., Christian S. D., Dryhurst G.: https://doi.org/10.1016/S0022-0728(79)80155-2>
21. Bioelectrochem. Bioenerg. 1976, 3, 338.
< V.: https://doi.org/10.1016/0302-4598(76)80015-3>
22. Bioelectrochem. Bioenerg. 1980, 7, 517.
< V., Pokorný J.: https://doi.org/10.1016/0302-4598(80)80011-0>
23. J. Electroanal. Chem. 1991, 310, 305.
< V., deLevie R.: https://doi.org/10.1016/0022-0728(91)85269-U>
24. J. Electroanal. Chem. 1989, 274, 1.
< U., Vetterl V., Jursa J.: https://doi.org/10.1016/0022-0728(89)87026-3>
25. J. Electroanal. Chem. 1980, 106, 371.
< U.: https://doi.org/10.1016/S0022-0728(80)80182-3>
26. J. Electroanal. Chem. 1984, 165, 221.
< U.: https://doi.org/10.1016/S0022-0728(84)80099-6>
27. J. Electroanal. Chem. 1982, 134, 243.
< U., Lohse H.: https://doi.org/10.1016/0022-0728(82)80004-1>
28. J. Electroanal. Chem. 1997, 425, 39.
< K., Sangaranarayanan M. V.: https://doi.org/10.1016/S0022-0728(96)04960-1>
29. J. Chem. Soc., Faraday Trans. 1998, 94, 2417.
< C.: https://doi.org/10.1039/a803520b>
30. Bioelectrochem. Bioenerg. 1984, 12, 137.
< J., Vetterl V.: https://doi.org/10.1016/0302-4598(84)85157-0>
31. Studia Biophys. 1986, 114, 75.
J., Vetterl V.:
32. Bioelectrochemistry 2009, 75, 89.
< L., Vetterl V., Doneux T.: https://doi.org/10.1016/j.bioelechem.2009.02.003>
33. Prog. Surf. Sci. 1994, 46, 335.
< C.: https://doi.org/10.1016/0079-6816(94)90015-9>
34. Z. Elektrochem., Ber. Bunsenges. Phys. Chem. 1958, 62, 192.
W.:
35. Nucleic Acids Res. 1993, 21, 3839.
< T. N., Wang A. H. J.: https://doi.org/10.1093/nar/21.16.3839>
36. Biochemistry 1988, 27, 7216.
< R. J., Stone M. P., Brush C. K., Harris T. M.: https://doi.org/10.1021/bi00419a008>
37. J. Biomol. Struct. Dyn. 1996, 13, 695.
< J., Leszczynski J., Vetterl V., Hobza P.: https://doi.org/10.1080/07391102.1996.10508882>
38. Theor. Chem. Acc. 2009, 122, 179.
< A., Guza R., Tretyakova N., York D. M.: https://doi.org/10.1007/s00214-008-0497-5>
39. Chem. Res. Toxicol. 2006, 19, 556.
< V., Wu W., Liu P., Neidigh J. W., Sowers L. C.: https://doi.org/10.1021/tx050341w>
40. J. Am. Chem. Soc. 2006, 128, 12510.
< M. T., Rodgers M. T., Hebert A. S., Ruslander L. E., Eisele L., Drohat A. C.: https://doi.org/10.1021/ja0634829>
41. J. Pharm. Sci. 1974, 63, 899.
< E. R., Hermann T. W., Lee H. K.: https://doi.org/10.1002/jps.2600630619>
42. Spectrochim. Acta, Part A 1997, 53, 2669.
< M., Al-Farhan K., Al-Resayes S., Ghaith A., Hasanein A. A.: https://doi.org/10.1016/S1386-1425(97)00158-3>
43. ChemPhysChem 2009, 10, 1649.
< T., Fojt L.: https://doi.org/10.1002/cphc.200900018>