Collect. Czech. Chem. Commun. 2009, 74, 1611-1622
https://doi.org/10.1135/cccc2009528
Published online 2009-12-22 08:15:44

Two-dimensional condensation of nucleobases: A comparative study of halogen derivatives of cytosine

Lukáš Fojta,*, Vladimír Vetterla and Thomas Doneuxb

a Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
b Chimie Analytique et Chimie des Interfaces, Faculté des Sciences, Université Libre de Bruxelles, Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium

References

1. Vetterl V.: Experientia 1965, 21, 9. <https://doi.org/10.1007/BF02136352>
2. Vetterl V.: Collect. Czech. Chem. Commun. 1966, 31, 2105. <https://doi.org/10.1135/cccc19662105>
3. Hasoň S., Simonaho S. P., Silvennoinen R., Vetterl V.: Electrochim. Acta 2003, 48, 651. <https://doi.org/10.1016/S0013-4686(02)00735-1>
4. Hasoň S., Vetterl V.: Bioelectrochemistry 2002, 56, 43. <https://doi.org/10.1016/S1567-5394(02)00053-1>
5. Hasoň S., Vetterl V.: J. Electroanal. Chem. 2002, 536, 19. <https://doi.org/10.1016/S0022-0728(02)01186-5>
6. Scharfe M., Hamelin A., Buess-Herman C.: Electrochim. Acta 1995, 40, 61. <https://doi.org/10.1016/0013-4686(94)00245-V>
7. Hölzle M. H., Wandlowski T., Kolb D. M.: Surf. Sci. 1995, 335, 281. <https://doi.org/10.1016/0039-6028(95)00445-9>
8. Roelfs J. B., Bunge E., Schröter C., Solomun T., Meyer H. J., Nichols R., Baumgärtel H.: J. Phys. Chem. B 1997, 101, 754. <https://doi.org/10.1021/jp961814y>
9. Wandlowski T., Lampner D., Lindsay S. M.: J. Electroanal. Chem. 1996, 404, 215. <https://doi.org/10.1016/0022-0728(95)04235-0>
10. Hö1zle M. H., Krznaric D., Kolb D. M.: J. Electroanal. Chem. 1995, 386, 235.
11. Miller I. R. J.: Mol. Biol. 1961, 3, 229. <https://doi.org/10.1016/S0022-2836(61)80063-6>
12. Miller I. R. J.: Mol. Biol. 1961, 3, 357. <https://doi.org/10.1016/S0022-2836(61)80073-9>
13. Sowerby S. J., Holm N. G., Petersen G. B.: Biosystems 2001, 61, 69. <https://doi.org/10.1016/S0303-2647(01)00130-7>
14. Sowerby S. J., Cohn C. A., Heckl W. M., Holm N. G.: Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 820. <https://doi.org/10.1073/pnas.98.3.820>
15. Sowerby S. J., Petersen G. B., Holm N. G.: Origins Life Evol. Biosphere 2002, 32, 35. <https://doi.org/10.1023/A:1013957812213>
16. deLevie R.: Chem. Rev. 1988, 88, 599. <https://doi.org/10.1021/cr00086a001>
17. deLevie R., Wandlowski T. J.: J. Electroanal. Chem. 1994, 366, 265. <https://doi.org/10.1016/0022-0728(93)02932-8>
18. Harinipriya S., Sangaranarayanan M. V.: J. Colloid Interface Sci. 2002, 250, 201. <https://doi.org/10.1006/jcis.2002.8301>
19. Brabec V., Christian S. D., Dryhurst G. J.: J. Electroanal. Chem. 1977, 85, 389. <https://doi.org/10.1016/S0022-0728(77)80306-9>
20. Brabec V., Kim M. H., Christian S. D., Dryhurst G.: J. Electroanal. Chem. 1979, 100, 111. <https://doi.org/10.1016/S0022-0728(79)80155-2>
21. Vetterl V.: Bioelectrochem. Bioenerg. 1976, 3, 338. <https://doi.org/10.1016/0302-4598(76)80015-3>
22. Vetterl V., Pokorný J.: Bioelectrochem. Bioenerg. 1980, 7, 517. <https://doi.org/10.1016/0302-4598(80)80011-0>
23. Vetterl V., deLevie R.: J. Electroanal. Chem. 1991, 310, 305. <https://doi.org/10.1016/0022-0728(91)85269-U>
24. Retter U., Vetterl V., Jursa J.: J. Electroanal. Chem. 1989, 274, 1. <https://doi.org/10.1016/0022-0728(89)87026-3>
25. Retter U.: J. Electroanal. Chem. 1980, 106, 371. <https://doi.org/10.1016/S0022-0728(80)80182-3>
26. Retter U.: J. Electroanal. Chem. 1984, 165, 221. <https://doi.org/10.1016/S0022-0728(84)80099-6>
27. Retter U., Lohse H.: J. Electroanal. Chem. 1982, 134, 243. <https://doi.org/10.1016/0022-0728(82)80004-1>
28. Pushpalatha K., Sangaranarayanan M. V.: J. Electroanal. Chem. 1997, 425, 39. <https://doi.org/10.1016/S0022-0728(96)04960-1>
29. Fontanesi C.: J. Chem. Soc., Faraday Trans. 1998, 94, 2417. <https://doi.org/10.1039/a803520b>
30. Jursa J., Vetterl V.: Bioelectrochem. Bioenerg. 1984, 12, 137. <https://doi.org/10.1016/0302-4598(84)85157-0>
31. Jursa J., Vetterl V.: Studia Biophys. 1986, 114, 75.
32. Fojt L., Vetterl V., Doneux T.: Bioelectrochemistry 2009, 75, 89. <https://doi.org/10.1016/j.bioelechem.2009.02.003>
33. Buess-Herman C.: Prog. Surf. Sci. 1994, 46, 335. <https://doi.org/10.1016/0079-6816(94)90015-9>
34. Lorenz W.: Z. Elektrochem., Ber. Bunsenges. Phys. Chem. 1958, 62, 192.
35. Jaishree T. N., Wang A. H. J.: Nucleic Acids Res. 1993, 21, 3839. <https://doi.org/10.1093/nar/21.16.3839>
36. Topping R. J., Stone M. P., Brush C. K., Harris T. M.: Biochemistry 1988, 27, 7216. <https://doi.org/10.1021/bi00419a008>
37. Sponer J., Leszczynski J., Vetterl V., Hobza P.: J. Biomol. Struct. Dyn. 1996, 13, 695. <https://doi.org/10.1080/07391102.1996.10508882>
38. Moser A., Guza R., Tretyakova N., York D. M.: Theor. Chem. Acc. 2009, 122, 179. <https://doi.org/10.1007/s00214-008-0497-5>
39. Valinluck V., Wu W., Liu P., Neidigh J. W., Sowers L. C.: Chem. Res. Toxicol. 2006, 19, 556. <https://doi.org/10.1021/tx050341w>
40. Bennett M. T., Rodgers M. T., Hebert A. S., Ruslander L. E., Eisele L., Drohat A. C.: J. Am. Chem. Soc. 2006, 128, 12510. <https://doi.org/10.1021/ja0634829>
41. Garrett E. R., Hermann T. W., Lee H. K.: J. Pharm. Sci. 1974, 63, 899. <https://doi.org/10.1002/jps.2600630619>
42. Monshi M., Al-Farhan K., Al-Resayes S., Ghaith A., Hasanein A. A.: Spectrochim. Acta, Part A 1997, 53, 2669. <https://doi.org/10.1016/S1386-1425(97)00158-3>
43. Doneux T., Fojt L.: ChemPhysChem 2009, 10, 1649. <https://doi.org/10.1002/cphc.200900018>