Collect. Czech. Chem. Commun. 2009, 74, 167-188
https://doi.org/10.1135/cccc2008160
Published online 2009-02-11 10:56:18

Bonding between the cesium cation and substituted benzoic acids or benzoate anions in the gas phase: A density functional theory and mass spectrometric study

Charly Mayeuxa, Lionel Massia, Jean-François Gala,*, Pierre-Charles Mariaa, Jaana Tammiku-Taulb, Ene-Liis Lohub and Peeter Burkb,*

a Laboratoire de Radiochimie, Sciences Analytiques et Environnement, and Plate-forme Technologique-Spectrométrie de Masse, Institute of Chemistry of Nice (FR CNRS 3037), University of Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
b Institute of Chemistry, University of Tartu, Jakobi 2, 51014 Tartu, Estonia

References

1. Gal J.-F., Maria P.-C., Massi L., Mayeux C., Burk P., Tammiku-Taul J.: Int. J. Mass Spectrom. 2007, 267, 7. <https://doi.org/10.1016/j.ijms.2007.03.004>
2a. Sigurgeirsson M. A., Arnolds O., Palsson S. E., Howard B. J., Gudnason K.: J. Environ. Radioact. 2005, 79, 39. <https://doi.org/10.1016/j.jenvrad.2004.05.014>
2b. Zaccone C., Cocozza C., Cheburkin A. K., Shotyk W., Miano T. M.: Water Air Soil Pollut. 2007, 186, 263. <https://doi.org/10.1007/s11270-007-9482-1>
2c. Zhiyanski M., Bech J., Sokolovska M., Lucot E., Bech J., Badot P.-M.: J. Geochem. Explor. 2008, 96, 256. <https://doi.org/10.1016/j.gexplo.2007.04.010>
3a. Papastefanou C., Manolopoulou M., Stoulos S., Ioannidou A., Gerasopoulos E.: J. Environ. Radioact. 2001, 55, 109. <https://doi.org/10.1016/S0265-931X(00)00182-X>
3b. Fasasi M. K., Tchokossa P., Ojo J. O., Balogun F. A.: J. Radioanal. Nucl. Chem. 1999, 240, 949. <https://doi.org/10.1007/BF02349880>
3c. Koua A., Michel H., Alabdullah J., Barci V., Aka H. K., Barci-Funel G., Ardisson G.: C. R., Chim., submitted.
4. Lima A. L., Hubeny J. B., Reddy C. M., King J. W., Hughen K. A., Eglinton T. I.: Geochim. Cosmochim. Acta 2005, 69, 1803. <https://doi.org/10.1016/j.gca.2004.10.009>
5. Handl J., Sachse R., Jakob D., Michel R., Evangelista H., Gonçalves A. C., de Freitas A. C.: J. Environ. Radioact. 2008, 99, 271. <https://doi.org/10.1016/j.jenvrad.2007.07.017>
6. Doering C., Akber R., Heijnis H.: J. Environ. Radioact. 2006, 87, 135. <https://doi.org/10.1016/j.jenvrad.2005.11.005>
7. Fujiwara H., Fukuyama T., Shirato Y., Ohkuro T., Taniyama I., Zhang T.-H.: Sci. Total Environ. 2007, 384, 306. <https://doi.org/10.1016/j.scitotenv.2007.05.024>
8a. Staunton S., Dumat C., Zsolnay A.: J. Environ. Radioact. 2002, 58, 163. <https://doi.org/10.1016/S0265-931X(01)00064-9>
8b. Rigol A., Vidal M., Rauret G.: J. Environ. Radioact. 2002, 58, 191. <https://doi.org/10.1016/S0265-931X(01)00066-2>
9a. Roig M., Vidal M., Rauret G., Rigol A.: J. Environ. Qual. 2007, 36, 943. <https://doi.org/10.2134/jeq2006.0402>
9b. Bellenger J.-P., Staunton S.: J. Environ. Radioact. 2008, 99, 831. <https://doi.org/10.1016/j.jenvrad.2007.10.010>
9c. Sutton R., Sposito G.: Environ. Sci. Technol. 2005, 39, 9009. <https://doi.org/10.1021/es050778q>
10. Hayes M. H. B., Clapp C. E.: Soil Sci. 2001, 166, 723. <https://doi.org/10.1097/00010694-200111000-00002>
11. Ehlken S., Kirchner G.: J. Environ. Radioact. 2002, 58, 97. <https://doi.org/10.1016/S0265-931X(01)00060-1>
12. Tamponnet C., Martin-Garin A., Gonze M.-A., Parekh N., Vallejo R., Sauras-Year T., Casadesus J., Plassard C., Staunton S., Nonden M., Avila R., Shaw G.: J. Environ. Radioact. 2008, 99, 820. <https://doi.org/10.1016/j.jenvrad.2007.10.011>
13. Ghabbour E. A., Davies G.: Humic Substances: Structures, Models and Functions. Royal Society of Chemistry, Cambridge 2001.
14a. Neumann G., Römheld V.: Plant Soil 1999, 211, 121. <https://doi.org/10.1023/A:1004380832118>
14b. Dakora F. D., Phillips D. A.: Plant Soil 2002, 245, 35. <https://doi.org/10.1023/A:1020809400075>
14c. Jones D. L.: Plant Soil 1998, 205, 25. <https://doi.org/10.1023/A:1004356007312>
14d. Strobel B. W.: Geoderma 2001, 99, 169. <https://doi.org/10.1016/S0016-7061(00)00102-6>
15a. Guivarch A., Hinsinger P., Staunton S.: Plant Soil 1999, 211, 131. <https://doi.org/10.1023/A:1004465302449>
15b. Staunton S., Hinsinger P., Guivarch A., Brechignac F.: Plant Soil 2003, 254, 443. <https://doi.org/10.1023/A:1025584016465>
16a. Maria P.-C., Gal J.-F., Massi L., Burk P., Tammiku-Taul J., Tamp S.: Rapid Commun. Mass Spectrom. 2005, 19, 568. <https://doi.org/10.1002/rcm.1818>
16b. Maria P.-C., Massi L., Sindreu-Box N., Gal J.-F., Burk P., Tammiku-Taul J., Kutsar M.: Rapid Commun. Mass Spectrom. 2006, 20, 2057. <https://doi.org/10.1002/rcm.2552>
16c. Burk P., Tamp S., Tammiku-Taul J., Maria P.-C., Gal J.-F.: Proc. Estonian Acad. Sci.-Chem. 2005, 54, 70.
17a. Hammett L. P.: Physical Organic Chemistry. McGraw–Hill, New York 1970.
17b. Exner O.: Correlation Analysis of Chemical Data. Plenum Press, New York 1988.
17c. Taft R. W., Topsom R. D.: Prog. Phys. Org. Chem. 1987, 16, 1. <https://doi.org/10.1002/9780470171950.ch1>
17d. Hansch C., Leo A., Taft R. W.: Chem. Rev. 1991, 91, 165. <https://doi.org/10.1021/cr00002a004>
17e. Chuchani G., Mishima M., Notario R., Abboud J.-L. M.: Advances in Quantitative Structure–Property Relationships, Vol. 2, pp. 35–116. JAI Press, Stamford, CT 1999.
17f. Exner O., Böhm S.: Curr. Org. Chem. 2006, 10, 763. <https://doi.org/10.2174/138527206776818892>
18. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision C.01. Gaussian Inc., Pittsburgh, PA 2003.
19a. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
19b. Lee C., Yang W., Parr R. G.: Phys. Rev. B 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
19c. Vosko S. H., Wilk L., Nusair M.: Can. J. Phys. 1980, 58, 1200. <https://doi.org/10.1139/p80-159>
19d. Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.: J. Phys. Chem. 1994, 98, 11623. <https://doi.org/10.1021/j100096a001>
20. Dunning T. H., Jr., Hay P. J. in: Modern Theoretical Chemistry (H. F. Schaefer III, Ed.), Vol. 3, pp. 1–28. Plenum, New York 1976.
21a. Bergner A., Dolg M., Kuechle W., Stoll H., Preuß H.: Mol. Phys. 1993, 80, 1431. <https://doi.org/10.1080/00268979300103121>
21b. Dolg M., Stoll H., Preuss H., Pitzer R. M.: J. Phys. Chem. 1993, 97, 5852. <https://doi.org/10.1021/j100124a012>
22. Glendening E., Feller D., Thompson M. A.: J. Am. Chem. Soc. 1994, 116, 10657. <https://doi.org/10.1021/ja00102a035>
23. Clark T., Chandrasekhar J., Spitznagel G. W., Schleyer P. v. R.: J. Comput. Chem. 1983, 4, 294. <https://doi.org/10.1002/jcc.540040303>
24. McIntyre C., McRae C., Jardine D., Batts B.: Rapid Commun. Mass Spectrom. 2002, 16, 785. <https://doi.org/10.1002/rcm.641>
25. McClellan J. E., Murphy III J. P., Mulholland J. J., Yost R. A.: Anal. Chem. 2002, 74, 402. <https://doi.org/10.1021/ac015610b>
26. Wiesbrock F., Schmidbaur H.: Inorg. Chem. 2003, 42, 7283. <https://doi.org/10.1021/ic034427t>
27. McMahon T. B., Kebarle P.: J. Am. Chem. Soc. 1977, 99, 2222. <https://doi.org/10.1021/ja00449a032>
28. Bartmess J. E. in: Negative Ion Energetics Data, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005; http://webbook.nist.gov/chemistry.
29. Cooks R. G., Patrick J. S., Kotiaho T., McLuckey S. A.: Mass Spectrom. Rev. 1994, 14, 287. <https://doi.org/10.1002/mas.1280130402>
30a. Armentrout P. B.: J. Mass Spectrom. 1999, 34, 74. <https://doi.org/10.1002/(SICI)1096-9888(199902)34:2<74::AID-JMS794>3.0.CO;2-6>
30b. Cooks R. G., Koskinen J. T., Thomas P. D.: J. Mass Spectrom. 1999, 34, 85. <https://doi.org/10.1002/(SICI)1096-9888(199902)34:2<85::AID-JMS795>3.0.CO;2-#>
30c. Drahos L., Vékey K.: J. Mass Spectrom. 1999, 34, 79. <https://doi.org/10.1002/(SICI)1096-9888(199902)34:2<79::AID-JMS793>3.0.CO;2-V>
31. Kortm G., Vogel W., Andrussow K.: Dissociation Constants of Organic Acids in Aqueous Solution. IUPAC, London 1961.
32. Rived F., Rosés M., Bosch E.: Anal. Chim. Acta 1998, 374, 309. <https://doi.org/10.1016/S0003-2670(98)00418-8>