Collect. Czech. Chem. Commun. 2009, 74, 1-27
https://doi.org/10.1135/cccc2008189
Published online 2009-01-13 10:11:56

exo-Substituent effects in halogenated icosahedral (B12H122–) and octahedral (B6H62–) closo-borane skeletons: chemical reactivity studied by experimental and quantum chemical methods

Martin Lepšíka, Martin Srneca, Drahomír Hnykb, Bohumír Grünerb, Jaromír Plešekb, Zdeněk Havlasa and Lubomír Rulíšeka,*

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Gilead Sciences Research Center & IOCB, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
b Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic

References

1. Schleyer P. v. R., Najafian K.: Inorg. Chem. 1998, 37, 3454. <https://doi.org/10.1021/ic980110v>
2a. Lipscomb W. N.: Boron Hydrides. W. A. Benjamin, Inc., New York, Amsterdam 1963.
2b. Williams R. E.: Chem. Rev. 1992, 92, 177. <https://doi.org/10.1021/cr00010a001>
3. Heřmánek S.: Chem. Rev. 1992, 92, 325. <https://doi.org/10.1021/cr00010a007>
4a. Kutzelnigg W.: Isr. J. Chem. 1980, 19, 193. <https://doi.org/10.1002/ijch.198000020>
4b. Schindler M., Kutzelnigg W.: J. Chem. Phys. 1982, 76, 1919. <https://doi.org/10.1063/1.443165>
4c. Kutzelnigg W., Schindler M., Fleischer U.: NMR, Basic Principles and Progress, p. 165. Springer Verlag, Berlin, Heidelberg 1990.
5a. Onak T., Tseng J., Diaz M., Tran D., Arias J., Herera S., Brown D.: Inorg. Chem. 1993, 32, 487. <https://doi.org/10.1021/ic00056a024>
5b. Holub J., Jelínek T., Hnyk D., Plzák Z., Císařová I., Bakardjiev M., Štíbr B.: Chem. Eur. J. 2001, 7, 1546. <https://doi.org/10.1002/1521-3765(20010401)7:7<1546::AID-CHEM1546>3.0.CO;2-K>
5c. Štíbr B., Tok O. L., Milius W., Bakardjiev M., Holub J., Hnyk D., Wrackmeyer B.: Angew. Chem. Int. Ed. 2002, 41, 2126. <https://doi.org/10.1002/1521-3773(20020617)41:12<2126::AID-ANIE2126>3.0.CO;2-6>
5d. Bakardjiev M., Holub J., Hnyk D., Štíbr B.: Chem. Eur. J. 2008, 14, 6529. <https://doi.org/10.1002/chem.200800233>
6. Sivaev I. B., Bregadze V. I., Sjöberg S.: Collect. Czech. Chem. Commun. 2002, 67, 679. <https://doi.org/10.1135/cccc20020679>
7. Preetz W., Peters G.: Eur. J. Inorg. Chem. 1999, 1831. <https://doi.org/10.1002/(SICI)1099-0682(199911)1999:11<1831::AID-EJIC1831>3.0.CO;2-J>
8. Muetterties E. L., Knoth W. H.: Polyhedral Boranes, Chap. 6, p. 103. Dekker, New York 1968; and references therein.
9. The cis and trans isomers of disubstituted B6 can also be denoted as exo and antipodal (see, e.g., refs7,45).
10. Böhm S., Exner O.: Pol. J. Chem. 2007, 81, 993.
11. Böhm S., Parik P., Exner O.: New J. Chem. 2006, 30, 384. <https://doi.org/10.1039/b512698c>
12. Exner O., Böhm S.: Curr. Org. Chem. 2006, 10, 763. <https://doi.org/10.2174/138527206776818892>
13. Exner O., Böhm S.: Collect. Czech. Chem. Commun. 2006, 71, 1239. <https://doi.org/10.1135/cccc20061239>
14. Böhm S., Fiedler P., Exner O.: New J. Chem. 2004, 28, 67. <https://doi.org/10.1039/b305986c>
15. Domenicano A. in: Stereochemical Applications of Gas Phase Electron Diffraction (I. Hargittai and M. Hargittai, Eds), Part B, pp. 281–324. VCH Publishers, New York, Weinheim 1988.
16. Hnyk D., Holub J., Hofmann M., Schleyer P. v. R., Robertson H. E., Rankin D. W. H.: J. Chem. Soc., Dalton Trans. 2000, 4617. <https://doi.org/10.1039/b005827k>
17. Grüner B., Plzák Z., Vinš I.: J. Chromatogr. 1991, 588, 201. <https://doi.org/10.1016/0021-9673(91)85024-A>
18. Ahlrichs R., Bär M., Häser M., Horn H., Kölmel C.: Chem. Phys. Lett. 1989, 162, 165. <https://doi.org/10.1016/0009-2614(89)85118-8>
19. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, revision C.02. Gaussian, Inc., Pittsburgh 2003.
20. Perdew J. P., Burke K., Ernzerhof M.: Phys. Rev. Lett. 1996, 77, 3865. <https://doi.org/10.1103/PhysRevLett.77.3865>
21a. Becke A. D.: Phys. Rev. A 1988, 38, 3098. <https://doi.org/10.1103/PhysRevA.38.3098>
21b. Lee C. T., Yang W. T., Parr R. G.: Phys. Rev. B 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
21c. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
21d. Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.: J. Phys. Chem. 1994, 98, 11623. <https://doi.org/10.1021/j100096a001>
22. Eichkorn K., Treutler O., Öhm H., Häser M., Ahlrichs R.: Chem. Phys. Lett. 1995, 240, 283. <https://doi.org/10.1016/0009-2614(95)00621-A>
23. Eichkorn K., Weigen F., Treutler O., Ahlrichs R.: Theor. Chim. Acta 1997, 97, 119. <https://doi.org/10.1007/s002140050244>
24. Schäfer A., Horn H., Ahlrichs R.: J. Chem. Phys. 1992, 97, 2571. <https://doi.org/10.1063/1.463096>
25. Weigend F.: Phys. Chem. Chem. Phys. 2006, 8, 1057. <https://doi.org/10.1039/b515623h>
26. Weigend F., Ahlrichs R.: Phys. Chem. Chem. Phys. 2005, 7, 3297. <https://doi.org/10.1039/b508541a>
27. Klamt A., Schuurmann G.: J. Chem. Soc., Perkin Trans. 2 1993, 799. <https://doi.org/10.1039/p29930000799>
28. Schäfer A., Klamt A., Sattel D., Lohrenz J. C. W., Eckert F.: Phys. Chem. Chem. Phys. 2000, 2, 2187. <https://doi.org/10.1039/b000184h>
29. Lide D. R. (Ed.): CRC Handbook of Chemistry and Physics, 88th ed. CRC Press, Boca Raton 2007.
30. Jensen F.: Introduction to Computational Chemistry. John Wiley & Sons, New York 1999.
31. Kollwitz M., Gauss J.: Chem. Phys. Lett. 1996, 260, 639. <https://doi.org/10.1016/0009-2614(96)00897-4>
32. Ziegler T., Schreckenbach G.: J. Phys. Chem. 1995, 99, 606.
33. Onak T. P., Landesman H. L., Williams R. E., Shapiro I.: J. Phys. Chem. 1959, 63, 1533. <https://doi.org/10.1021/j150579a601>
34. McKee M. L.: Inorg. Chem. 2001, 40, 5612. <https://doi.org/10.1021/ic010176h>
35. Shoham G., Schomburg D., Lipscomb W. N.: Cryst. Struct. Commun. 1980, 9, 429.
36. Haeckel O., Preetz W. Z.: Anorg. Allg. Chem. 1995, 621, 1454. <https://doi.org/10.1002/zaac.19956210903>
37a. Kuznetsov I. Yu., Vinitskii D. M., Solntsev K. A., Kuznetsov N. T., Butman L. A.: Russ. J. Inorg. Chem. 1987, 32, 3112.
37b. Zhukova N. A., Kuznetsov N. T., Solntsev K. A., Ustynok J. A., Grishin T. K.: Russ. J. Inorg. Chem. 1980, 25, 690.
38. A direct comparison of theoretical equilibrium distances with the experimental geometries should be made with caution, see, e.g.: Hargittai I., Hargittai M. in: Molecular Structures and Energetics (J. F. Liebman and A. Greenberg, Eds), Vol. 2, Chap. 1. VCH Publisher, New York 1987.
39a. Solntsev K. A., Buslaev Yu. A., Kuznetsov N. T.: Russ. J. Inorg. Chem. 1986, 31, 633.
39b. Kuznetsov N. T., Solntsev K. A.: Chemistry of Inorganic Hydrides. Nauka Publ., Moscow 1990.
39c. Privalov V. I., Tarasov V. P., Meladze M. A., Vinitski D. M., Solntsev K. A., Kuznetsov N. T.: Russ. J. Inorg. Chem. 1989, 34, 630.
40. Macháček J., Plešek J., Holub J., Hnyk D., Všetečka V., Císařová I., Kaupp M., Štíbr B.: Dalton Trans. 2006, 1024. <https://doi.org/10.1039/b512345c>
41. Grüner B.: Ph.D. Thesis. Czechoslovak Academy of Sciences, Prague 1990.
42. Grüner B., Heřmánek S., Plzák Z.: Proceedings of the 7th International Meeting on Boron Chemistry – IMEBORON VII, P. 5. Nicolaus Copernicus University Torun, Torun 1990.
43. Ivanov S. V., Lupinetti A. J., Solntsev K. A., Strauss S. H.: J. Fluorine Chem. 1998, 89, 65. <https://doi.org/10.1016/S0022-1139(98)00088-8>
44. Thomsen H., Haeckel O., Krause U., Preetz W. Z.: Anorg. Allg. Chem. 1996, 622, 2061. <https://doi.org/10.1002/zaac.19966221211>
45a. Fritze J., Preetz W., Marsmann H. C.: Z. Naturforsch. B 1987, 42, 287. <https://doi.org/10.1515/znb-1987-0307>
45b. Preetz W., Fritze J.: Z. Naturforsch. B 1987, 42, 282. <https://doi.org/10.1515/znb-1987-0306>
46. Custelcean R., Jackson J. E.: Chem. Rev. 2001, 101, 1963. <https://doi.org/10.1021/cr000021b>
47. Tissandier M. D., Cowen K. A., Feng W. Y., Gundlach E., Cohen M. H., Earhart A. D., Coe J. V., Tuttle T. R., Jr.: J. Phys. Chem. A 1998, 102, 7787. <https://doi.org/10.1021/jp982638r>
48. Greenwood N. N., Earnshaw A.: Chemistry of Elements. Pergamon Press Plc, Oxford 1984.
49. Bühl M., Holub J., Hnyk D., Macháček J.: Organometallics 2006, 25, 2173. <https://doi.org/10.1021/om051025f>
50. Fanfrlík J., Lepšík M., Horinek D., Havlas Z., Hobza P.: ChemPhysChem 2006, 7, 1100. <https://doi.org/10.1002/cphc.200500648>
51. Fanfrlík J., Hnyk D., Lepšík M., Hobza P.: Phys. Chem. Chem. Phys. 2007, 9, 2085. <https://doi.org/10.1039/b617776j>
52. Fanfrlík J., Brynda J., Řezáč J., Hobza P. Lepšík M.: J. Phys. Chem. B 2008, 112, 15094. <https://doi.org/10.1021/jp803528w>
53. Hoffmann R. L., Lipscomb W. N.: J. Chem. Phys. 1962, 37, 520. <https://doi.org/10.1063/1.1701367>
54. Srebny H. G., Preetz W.: Z. Naturforsch. B 1984, 39, 189. <https://doi.org/10.1515/znb-1984-0212>
55. Smith W. L., Meneghelli B. J., Thompson D. A., Klymko P., McClure N., Bower M., Rudolph R. W.: Inorg. Chem. 1977, 16, 3008. <https://doi.org/10.1021/ic50178a005>
56. MacCurtain J., Brint P., Spalding T. R.: J. Chem. Soc., Dalton Trans. 1985, 2591. <https://doi.org/10.1039/dt9850002591>
57a. Ivanov S. V., Lupinetti A. J., Miller S. M., Anderson O. P., Solntsev K. A., Strauss S. H.: Inorg. Chem. 1995, 34, 6419. <https://doi.org/10.1021/ic00130a003>
57b. Ivanov S. V., Rockwell J. J., Miller S. M., Anderson O. P., Solntsev K. A., Strauss S. H.: Inorg. Chem. 1996, 35, 7882. <https://doi.org/10.1021/ic960859a>
58. McLemore D. K., Dixon D. A., Strauss S. H.: Inorg. Chim. Acta 1999, 294, 193. <https://doi.org/10.1016/S0020-1693(99)00285-6>
59. Körbe S., Schreiber P. J., Michl J.: Chem. Rev. 2006, 106, 5208. <https://doi.org/10.1021/cr050548u>
60. Knoth W. H., Muetterties E. L., Miller H. C., Chia Y. T., Sauer J. C., Balthis J. H.: Inorg. Chem. 1964, 3, 159. <https://doi.org/10.1021/ic50012a002>
61. Srnec M., Ončák M., Zahradník R.: J. Phys. Chem. A 2008, 112, 3631. <https://doi.org/10.1021/jp711676m>
62. King R. B.: Chem. Rev. 2001, 101, 1119. <https://doi.org/10.1021/cr000442t>
63. McMurry J.: Organic Chemistry, 4th ed. Brooks/Cole Publishing Company, Pacific Grove 1996.