Collect. Czech. Chem. Commun. 2008, 73, 1729-1746
https://doi.org/10.1135/cccc20081729

Probing the Reactivity of the Potent AgF2 Oxidizer. Part 1: Organic Compounds

Dorota Grzybowskaa, Przemysław Malinowskia, Zoran Mazejb and Wojciech Grochalaa,c,*

a Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Warsaw, Pasteur 1, 02093 Warsaw, Poland
b Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
c Laboratory of Technology of Novel Functional Materials, Interdisciplinary Center for Mathematical and Computational Modeling, University of Warsaw, Pawińskiego 5a, 02106 Warsaw, Poland

References

1. Grochala W., Hoffmann R.: Angew. Chem. Int. Ed. 2001, 40, 2743. <https://doi.org/10.1002/1521-3773(20010803)40:15<2742::AID-ANIE2742>3.0.CO;2-X>
2. Oxidizing properties depend on the acidity of the environment which hosts Ag(II). They are supposed to decrease in the following order: Ag2+(FH)x > AgF+(FH)x > AgF2(s) > KAgF3(s) > K2AgF4(s). The strongest oxidizer in this series, Ag2+ solvated in anhydrous HF, is capable of oxidizing elemental Xe to XeF2: Žemva B., Bartlett N.: Actual. Chim. 2006, 301, 37.
3. Goryunkov A. A., Markov V. Yu., Boltalina O. V., Žemva B., Abdul-Sada A. K., Taylor R.: J. Fluorine Chem. 2001, 112, 191. <https://doi.org/10.1016/S0022-1139(01)00521-8>
4a. Cady G., Grosse A., Barber E., Burger L., Sheldon Z.: Ind. Eng. Chem. 1947, 39, 290. <https://doi.org/10.1021/ie50447a611>
4b. Aubke F.: J. Fluorine Chem. 1995, 71, 199. <https://doi.org/10.1016/0022-1139(94)06023-F>
4c. Rosen S.: Acc. Chem. Res. 1988, 21, 307. <https://doi.org/10.1021/ar00152a004>
5. Rausch A. D., Davis R. A., Osborne D. W.: J. Org. Chem. 1963, 28, 494. <https://doi.org/10.1021/jo01037a055>
6. Zweig A., Fischer R. G., Lancaster J. E.: J. Org. Chem. 1980, 45, 3597. <https://doi.org/10.1021/jo01306a011>
7. A large part of these results was presented at the 15th European Symposium on Fluorine Chemistry, Prague 2007.
8a. Dean J. A.: Lange’s Handbook of Chemistry, 15th ed. McGraw–Hill, New York 1998 (accessed via www.knovel.com).
8b. M. Kh. Karapetyants, Karapetyans M. L.: Thermodynamic Constants of Inorganic and Organic Compounds. Ann Arbor-Humprey Science Publishers, London 1970.
8c. NIST Chemistry Webbook Database (accessed via www.nist.gov).
9a. Francis R. J., Halasyamani P. S., O’Hare D.: Chem. Mater. 1998, 10, 3131. <https://doi.org/10.1021/cm980225x>
9b. Kim, J.-Y. Norquist A. J., O’Hare D.: Chem. Commun. 2002, 2198. <https://doi.org/10.1039/b206749h>
10. For further details see: a) Grzybowska D.: M.Sc. Thesis. University of Warsaw, Warsaw 2007.
10b. Malinowski P.: M.Sc. Thesis. University of Warsaw, Warsaw 2008.
11. c-C6F12 sublimes at a temperature as low as 51 °C; we could not find the ΔH0 value for the solid compound and therefore we have used the one for the gas phase. Correction of ΔH0r with the sublimation enthalpy will make the ΔH0r even more negative.
12. Tramšek M., Žemva B.: Acta Chim. Sloven. 2002, 49, 209.
13. Malinowski P., Grzybowska D., Mazej Z., Grochala W.: Z. Anorg. Allg. Chem. 2008, 634, 2608. <https://doi.org/10.1002/zaac.200800301>
14. Grochala W.: J. Fluorine Chem. 2008, 129, 82. <https://doi.org/10.1016/j.jfluchem.2007.09.001>
15a. Jenkins H. D. B. in: CRC Handbook of Chemistry and Physics 1999–2000: A. Ready- Reference Book of Chemical and Physical Data (D. R. Lide, Ed.), 79th ed. CRC Press, Boca Raton 1998 (accessed via www.webelements.com). Thermodynamic reasons cannot be excluded since perfluorination of NH3 reduces its proton affinity by nearly 30%: b) Mottel E. A.: Acid-Base Strength (results available on www.rose-hulman.edu).
16. Kornath A., Neumann F.: Inorg. Chem. 2003, 42, 2894. <https://doi.org/10.1021/ic020663c>
17. It cannot be excluded that the Cl/F ligand exchange may take place to a slight degree, since we have observed that AgF2 which had been kept under CCl4 and then dried was much more prone to photochemical decomposition than the parent AgF2.
18a. Calza P., Minero C., Hiskia A., Papacostantinou E., Pelizzetti E.: Appl. Catal. B 1999, 21, 191. <https://doi.org/10.1016/S0926-3373(99)00022-3>
18b. Hargittai M., Schultz G., Schwerdtfeger P., Seth M.: Struct. Chem. 2001, 12, 377. <https://doi.org/10.1023/A:1011960320787>
18c. Kong Q. Y., Wulff M., Bratos S., Vuilleumier R., Kim J., Ihee H.: J. Phys. Chem. A 2006, 110, 11178. <https://doi.org/10.1021/jp062919w>
19. There is vast literature available on this topic. See for example: He H., Wu Y.-J.: Tetrahedron Lett. 2004, 45, 3237. <https://doi.org/10.1016/j.tetlet.2004.02.124>
20. Grochala W.: J. Mol. Model. 2008, 14, 887. <https://doi.org/10.1007/s00894-008-0336-6>
21. Steinkopf T.: Ber. Dtsch. Chem. Ges. 1920, 53, 1144. <https://doi.org/10.1002/cber.19200530704>
22. For vast literature on phenoxyl radicals see, for example: Ye M., Schuler R. H.: J. Phys. Chem. 1989, 93, 1898; and references therein. <https://doi.org/10.1021/j100342a040>
23a. CF3OH undergoes spontaneous decomposition to CF2O and HF at quite low temperatures: Seppelt K.: Angew. Chem., Int. Ed. Engl. 1977, 16, 322. <https://doi.org/10.1002/anie.197703221>
23b. Christe K. O., Hegge J., Hoge B., Haiges R.: Angew. Chem. Int. Ed. 2007, 46, 6155. <https://doi.org/10.1002/anie.200701823>
24. Leung P. C., Lee K. C., Aubke F.: Can. J. Chem. 1979, 57, 326. These authors give the temperature of thermal decomposition of a solid (CF3SO3)2Ag of 170 °C. <https://doi.org/10.1139/v79-054>
25. KAgF2L and KAgL3 are analogous to the known KAgF3, while K2AgF2L2 and K2AgL4 to the known K2AgF4. K2Ag(SO3F)4 has been reported.