Collect. Czech. Chem. Commun. 2008, 73, 1553-1611
https://doi.org/10.1135/cccc20081553

A Building Block Approach to Monofluorinated Organic Compounds

Alexander S. Konev and Alexander F. Khlebnikov*

Department of Chemistry, St. Petersburg State University, Universitetskii pr. 26, 198504 St. Petersburg, Russia

References

1a. Bégué J. P., Bonnet-Delpon D.: Chimie biorganique et médicinale du fluor. EDP Sciences/CNRS editions, Les Ulis/Paris 2005.
1b. Shah P., Westwell A. D.: J. Enzyme Inhib. Med. Chem. 2007, 22, 527. <https://doi.org/10.1080/14756360701425014>
1c. Gernert D. L., Ajamie R., Ardecky R. A., Bell M. G., Leibowitz M. D., Mais D. A., Mapes C. M., Michellys P. Y., Rungta D., Reifel-Miller A., Tyhonas J. S., Yumibe N., Grese T. A.: Bioorg. Med. Chem. Lett. 2003, 13, 3191. <https://doi.org/10.1016/S0960-894X(03)00703-0>
1d. Ismail F. M. D.: J. Fluorine Chem. 2002, 118, 27. <https://doi.org/10.1016/S0022-1139(02)00201-4>
1e. Isanbor Ch., O’Hagan D.: J. Fluorine Chem. 2006, 127, 303. <https://doi.org/10.1016/j.jfluchem.2006.01.011>
1f. Dolbier W. R., Jr.: J. Fluorine Chem. 2005, 126, 157. <https://doi.org/10.1016/j.jfluchem.2004.09.033>
1g. Smart B. E.: J. Fluorine Chem. 2001, 109, 3. <https://doi.org/10.1016/S0022-1139(01)00375-X>
1h. Tressaud A., Haufe G. (Eds): Fluorine and Health. Molecular Imaging, Biomedical Materials and Pharmaceuticals. Elsevier, Amsterdam 2008.
1i. Ojima I., McCarthy J. R., Welch J. T. (Eds): Biomedical Frontiers of Fluorine Chemistry, ACS Symposium Series, Vol. 639. American Chemical Society, Washington D.C. 1996.
2a. Leroux F., Jeschke P., Schlosser M.: Chem. Rev. 2005, 105, 827. <https://doi.org/10.1021/cr040075b>
2b. Cartwright D. in: Organofluorine Chemistry: Principles and Commercial Applications (R. E. Banks, B. E. Smart and J. C. Tatlow, Eds). Plenum, New York 1994.
2c. Theodoris G. in: Fluorine and the Environment (A. Tressaud, Ed.), Vol. 2, p. 121. Elsevier, Amsterdam 2006.
3a. Prakesch M., Grée D., Chandrasekhar S., Grée R.: Eur. J. Org. Chem. 2005, 1221, and references therein. <https://doi.org/10.1002/ejoc.200400585>
3b. Liu X., Deng G., Chu X., Li N., Wu L., Li D.: Bioorg. Med. Chem. Lett. 2007, 17, 3187. <https://doi.org/10.1016/j.bmcl.2007.03.023>
3c. Yu J.-X., Kodibagkar V. D., Cui W., Mason R. P.: Curr. Med. Chem. 2005, 12, 819. <https://doi.org/10.2174/0929867053507342>
4a. Purser S., Moore P. R., Swallow S., Gouverneur V.: Chem. Soc. Rev. 2008, 37, 320. <https://doi.org/10.1039/b610213c>
4b. Liu J., Ni C., Li Y., Zhang L., Wang G., Hu J.: Tetrahedron Lett. 2006, 47, 6753. <https://doi.org/10.1016/j.tetlet.2006.07.079>
4c. Tayer A. M.: Chem. Eng. News 2006, 84, 15. <https://doi.org/10.1021/cen-v084n033.p015>
5. Handbooks: a) Handbook of Reagents for Organic Synthesis: Fluorine-Containing Reagents (L. A. Paquette, Ed.). John Wiley & Sons, Chichester 2007.
5b. Science of Synthesis, Fluorine, Vol. 34 (J. M. Percy, Ed.). Georg Thieme Verlag, Stuttgart 2005.
5c. Methods of Organic Chemistry (Houben–Weyl), Organofluorine Compounds, Vols E 10a, E 10b1, E 10b2, (B. Baasner, H. Hagemann and J. C. Tatlow, Eds). Thieme Publishing Group, Stuttgart, New York 1998–1999. Textbooks: d) Uneyama K.: Organofluorine Chemistry. Blackwell, Oxford 2006.
5e. Kirsch P.: Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Applications. Wiley-VCH, Weinheim 2004.
5f. Chambers R. D.: Fluorine in Organic Chemistry. Blackwell, Oxford 2004.
5g. Hiyama T.: Organofluorine Compounds: Chemistry and Applications. Springer, Berlin 2000. Monographs: h) Current Fluoroorganic Chemistry. New Synthetic Directions, Technologies, Materials and Biological Applications (V. A. Soloshonok, K. Mikami, T. Yamazaki, J. T. Welch and J. F. Honek, Eds), ACS Symposium Series, Vol. 949. American Chemical Society, Washington, DC 2007.
5i. Fluorine-Containing Synthons (V. A. Soloshonok, Ed.), ACS Symposium Series, Vol. 911. American Chemical Society, Washington 2005.
5j. Asymmetric Fluoroorganic Chemistry. Synthesis, Applications and Future Directions (V. P. Ramachandran, Ed.), ACS Symposium Series, Vol. 746. American Chemical Society, Washington D.C. 2000.
5k. Enantiocontrolled Synthesis of Fluoro-Organic Compounds. Stereochemical Challenges and Biomedicinal Targets (V. A. Soloshonok, Ed.). John Wiley & Sons, Chichester 1999.
5l. Fluorine-Containing Amino Acids. Synthesis and Properties (V. P. Kukhar and V. A. Soloshonok, Eds). John Wiley & Sons, Chichester 1995.
6a. Allmendinger T., Furet P., Hungerbühler E.: Tetrahedron Lett. 1990, 31, 7297. <https://doi.org/10.1016/S0040-4039(00)88548-2>
6b. Schlosser M., Michel D.: Tetrahedron 1996, 52, 99. <https://doi.org/10.1016/0040-4020(95)00886-D>
6c. Mikami K., Itoh Y., Yamanaka M.: Chem. Rev. 2004, 104, 1. <https://doi.org/10.1021/cr030685w>
6d. Berkowitz D. B., Bose M.: J. Fluorine Chem. 2001, 112, 13. <https://doi.org/10.1016/S0022-1139(01)00478-X>
6e. O’Hagan D., Rzepa H. S.: Chem. Commun. 1997, 645. <https://doi.org/10.1039/a604140j>
6f. Van der Veken P., Senten K., Kertèsz I., De Meester I., Lambeir A.-M., Maes M.-B., Scharpé S., Haemers A., Augustyns K.: J. Med. Chem. 2005, 48, 1768. <https://doi.org/10.1021/jm0495982>
6g. Gharat L. A., Martin A. R.: J. Heterocycl. Chem. 1996, 33, 197. <https://doi.org/10.1002/jhet.5570330134>
6h. Laue K. W., Mück-Lichtenfeld C., Haufe G.: Tetrahedron 1999, 55, 10413. <https://doi.org/10.1016/S0040-4020(99)00581-5>
7. For a review on synthesis of 18F labeled compounds for PET see: Lasne M.-C., Perrio C., Rouden J., Barré L., Roeda D., Dolle F., Crouzel C.: Top. Curr. Chem. 2002, 222, 201. <https://doi.org/10.1007/3-540-46009-8_7>
8a. For a review on electrophilic fluorination, see, e.g.: Taylor S. D., Kotoris C. C., Hum G.: Tetrahedron 1999, 55, 12431. <https://doi.org/10.1016/S0040-4020(99)00748-6>
8b. for a review on electrolytic fluorination, see: Dawood K. M.: Tetrahedron 2004, 60, 1435. <https://doi.org/10.1016/j.tet.2003.11.017>
8c. for reviews on Selectfluor, see: Nyffeler P. T., Durón S. G., Burkart M. D., Vincent S. P., Wong C.-H.: Angew. Chem. Int. Ed. 2005, 44, 192. <https://doi.org/10.1002/anie.200400648>
8d. Banks R. E.: J. Fluorine Chem. 1998, 87, 1. <https://doi.org/10.1016/S0022-1139(97)00127-9>
8e. Rozen S.: Acc. Chem. Res. 2005, 38, 803. <https://doi.org/10.1021/ar040270c>
8f. Hutchinson J., Sandford G.: Top. Curr. Chem. 1997, 193, 1. <https://doi.org/10.1007/3-540-69197-9_1>
8g. Ma J.-A., Cahard D.: Chem. Rev. 2004, 104, 6119. <https://doi.org/10.1021/cr030143e>
9. Percy J. M.: Top. Curr. Chem. 1997, 193, 131. <https://doi.org/10.1007/3-540-69197-9_4>
10a. Sutherland A., Willis C. L.: Nat. Prod. Rep. 2000, 17, 621. <https://doi.org/10.1039/a707503k>
10b. Qiu X.-L., Meng W.-D., Qing F.-L.: Tetrahedron 2004, 60, 6711. <https://doi.org/10.1016/j.tet.2004.05.051>
11a. van Steenis J. H., van der Gen A.: J. Chem. Soc., Perkin Trans. 1 2002, 2117. <https://doi.org/10.1039/b106187a>
11b. Cox D. G., Gurusamy N., Burton D. J.: J. Am. Chem. Soc. 1985, 107, 2811. <https://doi.org/10.1021/ja00295a046>
12a. Dolbier W. R., Jr., Battiste M. A.: Chem. Rev. 2003, 103, 1071. <https://doi.org/10.1021/cr010023b>
12b. Taguchi T., Okada M.: J. Fluorine Chem. 2000, 105, 279. <https://doi.org/10.1016/S0022-1139(99)00272-9>
12c. Fedoryński M.: Chem. Rev. 2003, 103, 1099. <https://doi.org/10.1021/cr0100087>
13a. Shimizu M., Hiyama T.: Angew. Chem. Int. Ed. 2005, 44, 214. <https://doi.org/10.1002/anie.200460441>
13b. Burton D. J., Lu L.: Top. Curr. Chem. 1997, 193, 45. <https://doi.org/10.1007/3-540-69197-9_2>
14. Percy J. M., Prime M. E.: J. Fluorine Chem. 1999, 100, 147. <https://doi.org/10.1016/S0022-1139(99)00149-9>
15. Iseki K.: Tetrahedron 1998, 54, 13887. <https://doi.org/10.1016/S0040-4020(98)00740-6>
16. Fujiwara T., Takeuchi Y.: J. Fluorine Chem. 2005, 126, 941. <https://doi.org/10.1016/j.jfluchem.2005.04.008>
17. Bhadury P. S., Palit M., Sharma M., Raza S. K., Jaiswal D. K.: J. Fluorine Chem. 2002, 116, 75. <https://doi.org/10.1016/S0022-1139(02)00104-5>
18a. Kawabata N., Tanimoto M., Fujiwara S.: Tetrahedron 1979, 35, 1919. <https://doi.org/10.1016/0040-4020(79)85049-8>
18b. Weyerstahl P., Mathias R., Blume G.: Tetrahedron Lett. 1973, 611. <https://doi.org/10.1016/S0040-4039(01)95859-9>
19. Fukuzumi T., Shibata N., Sugiura M., Yasui H., Nakamura S., Toru T.: Angew. Chem. Int. Ed. 2006, 45, 4973; and references therein. <https://doi.org/10.1002/anie.200600625>
20a. van der Donk W. A., Gerfen G. J., Stubbe J.: J. Am. Chem. Soc. 1998, 120, 4252. <https://doi.org/10.1021/ja9740273>
20b. Koizumi T., Hagi T., Horie Y., Takeuchi Y.: Chem. Pharm. Bull. 1987, 35, 3959. <https://doi.org/10.1248/cpb.35.3959>
21. van Steenis J. H., van der Gen A.: Eur. J. Org. Chem. 2001, 897. <https://doi.org/10.1002/1099-0690(200103)2001:5<897::AID-EJOC897>3.0.CO;2-B>
22a. Nishimura B. J., Furukawa J.: Chem. Commun. 1971, 1375. <https://doi.org/10.1039/c29710001375>
22b. Tamura O., Hashimoto M., Kobayashi Y., Katoh T., Nakatani K., Kamada M., Hayakawa I., Akiba T., Terashima S.: Tetrahedron 1994, 50, 3889. <https://doi.org/10.1016/S0040-4020(01)89665-4>
22c. Hahnfeld J. L., Burton D. J.: Tetrahedron Lett. 1975, 1819. <https://doi.org/10.1016/S0040-4039(00)75265-8>
22d. Akiba T., Tamura O., Hashimoto M., Kobayashi Y., Katoh T., Nakatani K., Kamada M., Hayakawa I., Terashima S.: Tetrahedron 1994, 50, 3905. <https://doi.org/10.1016/S0040-4020(01)89666-6>
22e. Schlosser M., Heinz G.: Angew. Chem., Int. Ed. Engl. 1968, 7, 820. <https://doi.org/10.1002/anie.196808201>
23a. Fouque E., Rousseau G., Seyden-Penne J.: J. Org. Chem. 1990, 55, 4807. <https://doi.org/10.1021/jo00303a010>
23b. Burton D. J., Hahnfeld J. L. in: Fluorine Chemistry Reviews (P. Tarrant, Ed.), Vol. 8, pp. 119–188. Marcel Dekker, New York 1977.
23c. Seyferth D., Darra K. V.: J. Org. Chem. 1970, 35, 1297. <https://doi.org/10.1021/jo00830a010>
23d. Weyerstahl P., Blume G., Müller C.: Tetrahedron Lett. 1971, 3869. <https://doi.org/10.1016/S0040-4039(01)97310-1>
23e. Schlosser M., Van Chau L.: Helv. Chim. Acta 1975, 58, 2595. <https://doi.org/10.1002/hlca.19750580844>
23f. Volchkov N. V., Zabolotskikh A. V., Ignatenko A. V., Nefedov O. M.: Russ. Chem. Bull. 1990, 39, 1458. <https://doi.org/10.1007/BF00957859>
23g. Burton D. J., Hahnfeld J. L.: J. Org. Chem. 1977, 42, 828. <https://doi.org/10.1021/jo00425a012>
23h. Wijsman G. W., Iglesias G. A., Beekman M. C., de Wolf W. H., Bickelhaupt F., Kooijman H., Spek A. L.: J. Org. Chem. 2001, 66, 1216. <https://doi.org/10.1021/jo0013195>
23i. Wijsman G. W., Boesveld W. M., Beekman M. C., Goedheijt M. S., van Baar B. L. M., de Kanter F. J. J., de Wolf W. H., Bickelhaupt F.: Eur. J. Org. Chem. 2002, 614. <https://doi.org/10.1002/1099-0690(200202)2002:4<614::AID-EJOC614>3.0.CO;2-Q>
24. Müller C., Stier F., Weyerstahl P.: Chem. Ber. 1977, 110, 124. <https://doi.org/10.1002/cber.19771100113>
25. Mathias R., Weyerstahl P.: Chem. Ber. 1979, 112, 3041. <https://doi.org/10.1002/cber.19791120902>
26. Brahms D. L. S., Dailey W. P.: Chem. Rev. 1996, 96, 1585. <https://doi.org/10.1021/cr941141k>
27. Shi G.-Q., Wang Q., Schlosser M.: Tetrahedron 1996, 52, 4403. <https://doi.org/10.1016/0040-4020(96)00084-1>
28a. Kostikov R. R., Khlebnikov A. F.: Chem. Heterocycl. Comp. 1976, 12, 1191. <https://doi.org/10.1007/BF00470213>
28b. Khlebnikov A. F., Kostikov R. R.: Russ. Chem. Bull. 1993, 42, 603. <https://doi.org/10.1007/BF00703989>
28c. Khlebnikov A. F., Novikov M. S., Kostikov R. R.: Adv. Heterocycl. Chem. 1996, 65, 93. <https://doi.org/10.1016/S0065-2725(08)60296-2>
28d. Khlebnikov A. F., Novikov M. S., Kostikov R. R.: Russ. Chem. Rev. 2005, 74, 171. <https://doi.org/10.1070/RC2005v074n02ABEH000973>
29a. Kostikov R. R., Khlebnikov A. F., Ogloblin K. A.: Dokl. Chem. 1975, 223, 1375.
29b. Yamanaka H., Kikui J., Teramura K., Ando T.: J. Org. Chem. 1976, 41, 3794. <https://doi.org/10.1021/jo00886a005>
30a. Kostikov R. R., Khlebnikov A. F., Ogloblin K. A.: J. Org. Chem. U.S.S.R. 1977, 13, 1721.
30b. Khlebnikov A. F., Novikov M. S., Kostikov R. R.: Mendeleev Commun. 1997, 127.
30c. Khlebnikov A. F., Novikov M. S., Shinkevich E. Yu., Vidovic D.: Org. Biomol. Chem. 2005, 3, 4040. <https://doi.org/10.1039/b512409c>
30d. Khlebnikov A. F., Novikov M. S., Nikiforova T. Y., Kostikov R. R.: Russ. J. Org. Chem. 1999, 35, 91.
30e. Shinkevich E. Yu., Novikov M. S., Khlebnikov A. F., Kostikov R. R., Kopf J., Magull J.: Russ. J. Org. Chem. 2007, 43, 1065. <https://doi.org/10.1134/S1070428007070214>
31a. Konev A. S., Novikov M. S., Khlebnikov A. F.: Tetrahedron Lett. 2005, 46, 8337. <https://doi.org/10.1016/j.tetlet.2005.09.165>
31b. Konev A. S., Novikov M. S., Khlebnikov A. F.: Russ. J. Org. Chem. 2007, 43, 286. <https://doi.org/10.1134/S1070428007020224>
32. Konev A. S., Novikov M. S., Khlebnikov A. F., Tehrani K. A.: J. Fluorine Chem. 2007, 128, 114. <https://doi.org/10.1016/j.jfluchem.2006.10.013>
33. Konev A. S., Novikov M. S., Khlebnikov A. F., Tehrani K. A.: Tetrahedron 2008, 64, 117. <https://doi.org/10.1016/j.tet.2007.10.067>
34a. Novikov M. S., Khlebnikov A. F., Besedina O. V., Kostikov R. R.: Tetrahedron Lett. 2001, 42, 533. <https://doi.org/10.1016/S0040-4039(00)02105-5>
34b. Novikov M. S., Khlebnikov A. F., Shevchenko M. V., Kostikov R. R., Vidovic D.: Russ. J. Org. Chem. 2005, 41, 1496. <https://doi.org/10.1007/s11178-005-0373-x>
34c. Novikov M. S., Khlebnikov A. F., Shevchenko M. V.: J. Fluorine Chem. 2003, 123, 177. <https://doi.org/10.1016/S0022-1139(03)00116-7>
35a. Novikov M. S., Khlebnikov A. F., Sidorina E. S., Kostikov R. R.: J. Fluorine Chem. 1998, 90, 117. <https://doi.org/10.1016/S0022-1139(98)00160-2>
35b. Novikov M. S., Khlebnikov A. F., Sidorina E. S., Kostikov R. R.: J. Chem. Soc., Perkin Trans. 1 2000, 231. <https://doi.org/10.1039/a905518e>
35c. Voznyi I. V., Novikov M. S., Khlebnikov A. F., Kopf J., Kostikov R. R.: Russ. J. Org. Chem. 2004, 40, 199. <https://doi.org/10.1023/B:RUJO.0000034942.42778.e0>
36a. Khistiaev K. A., Novikov M. S., Khlebnikov A. F., Magull J.: Tetrahedron Lett. 2008, 49, 1237. <https://doi.org/10.1016/j.tetlet.2007.12.037>
36b. Novikov M. S., Khlebnikov A. F., Khistiaev K. A., Magull J.: Russ. Chem. Bull. 2008, 57, in press.
37. Novikov M. S., Khlebnikov A. F., Voznyi I. V., Besedina O. V., Kostikov R. R.: Russ. J. Org. Chem. 2005, 41, 361. <https://doi.org/10.1007/s11178-005-0171-5>
38. Novikov M. S., Amer A. A., Khlebnikov A. F.: Tetrahedron Lett. 2006, 47, 639. <https://doi.org/10.1016/j.tetlet.2005.11.131>
39a. Khlebnikov A. F., Novikov M. S., Amer A. A.: Tetrahedron Lett. 2002, 8523. <https://doi.org/10.1016/S0040-4039(02)02076-2>
39b. Khlebnikov A. F., Novikov M. S., Amer A. A.: Russ. Chem. Bull. 2004, 53, 1092. <https://doi.org/10.1023/B:RUCB.0000041305.50408.ed>
40a. Voznyi I. V., Novikov M. S., Khlebnikov A. F.: Synlett 2005, 1006.
40b. Voznyi I. V., Novikov M. S., Khlebnikov A. F., Kostikov R. R.: Russ. J. Org. Chem. 2006, 42, 689. <https://doi.org/10.1134/S1070428006050071>
41. Khlebnikov A. F., Novikov M. S., Dolgikh S. A., Magull J.: ARKIVOC 2008, N9, 94. <https://doi.org/10.3998/ark.5550190.0009.909>
42. Peng S., Qing F.-L., Li Y.-Q., Hu C.-M.: J. Org. Chem. 2000, 65, 694. <https://doi.org/10.1021/jo991276w>
43. Huang X.-H., He P.-Y., Shi G.-Q.: J. Org. Chem. 2000, 65, 627. <https://doi.org/10.1021/jo991450g>
44a. Ernet T., Maulitz A. H., Würthwein E.-U., Haufe G.: J. Chem. Soc., Perkin Trans. 1 2000, 1929.
44b. Dolbier W. R., Jr., Rong X. X., Bartberger M. D., Koroniak H., Smart B. E., Yang Zh.-Y.: J. Chem. Soc., Perkin Trans. 2 1998, 219. <https://doi.org/10.1039/a707701g>
44c. Nair V., Kamboj R. C.: Bioorg. Med. Chem. Lett. 2003, 13, 645. <https://doi.org/10.1016/S0960-894X(02)01053-3>
44d. Zhou S., Kern E. R., Gullen E., Cheng Y.-C., Drach J. C., Tamiya S., Mitsuya H., Zemlicka J.: J. Med. Chem. 2006, 49, 6120. <https://doi.org/10.1021/jm0607404>
44e. Kataoka K., Tsuboi S.: Synthesis 1999, 452.
45a. Barkakaty B., Takaguchi Y., Tsuboi S.: Synthesis 2006, 959.
45b. Barhdadi R., Simsen B., Troupel M., Nédélec J.-Y.: Tetrahedron 1997, 53, 1721. <https://doi.org/10.1016/S0040-4020(96)01073-3>
46. Barkakaty B., Takaguchi Y., Tsuboi S.: Tetrahedron 2007, 63, 970. <https://doi.org/10.1016/j.tet.2006.11.019>
47. Kolomeitsev A., Shtarev A., Chabanenko K., Savina T., Yagupolskii Y., Görg M., Przyborowski J., Lork E., Röschenthaler G.-V.: Chem. Commun. 1998, 705. <https://doi.org/10.1039/a707757b>
48a. Nenajdenko V. G., Shastin A. V., Korotchenko V. N., Varseev G. N., Balenkova E. S.: Eur. J. Org. Chem. 2003, 302. <https://doi.org/10.1002/ejoc.200390033>
48b. Nenajdenko V. G., Korotchenko V. N., Shastin A. V., Tyurin D. A., Balenkova E. S.: Russ. Chem. Bull. 2003, 52, 1835. <https://doi.org/10.1023/A:1026077309403>
48c. Korotchenko V. N., Shastin A. V., Nenajdenko V. G., Tyurin D. A., Balenkova E. S.: Russ. J. Org. Chem. 2003, 39, 527. <https://doi.org/10.1023/A:1026007801456>
49. Kvíčala J., Štambaský J., Böhm S., Paleta O.: J. Fluorine Chem. 2002, 113, 147. <https://doi.org/10.1016/S0022-1139(01)00504-8>
50. Kvíčala J., Štambaský J., Skalický M., Paleta O.: J. Fluorine Chem. 2005, 126, 1390. <https://doi.org/10.1016/j.jfluchem.2005.07.016>
51a. Kuroboshi M., Yamada N., Takebe Y., Hiyama T.: Synlett 1995, 987. <https://doi.org/10.1055/s-1995-5145>
51b. Shimizu M., Yamada N., Takebe Y., Hata T., Kuroboshi M., Hiyama T.: Bull. Chem. Soc. Jpn. 1998, 71, 2903. <https://doi.org/10.1246/bcsj.71.2903>
52a. Hata T., Shimizu M., Hiyama T.: Synlett 1996, 831. <https://doi.org/10.1055/s-1996-5623>
52b. Hata T., Kitagawa H., Shimizu M., Hiyama T.: Bull. Chem. Soc. Jpn. 2000, 73, 1691. <https://doi.org/10.1246/bcsj.73.1691>
53. Nakagawa M., Saito A., Soga A., Yamamoto N., Taguchi T.: Tetrahedron Lett. 2005, 46, 5257. <https://doi.org/10.1016/j.tetlet.2005.06.035>
54. Shimizu M., Takebe Y., Kuroboshi M., Hiyama T.: Tetrahedron Lett. 1996, 37, 7387. <https://doi.org/10.1016/0040-4039(96)01684-X>
55. Wakselman C., Molines H., Tordeux M.: J. Fluorine Chem. 2000, 102, 211. <https://doi.org/10.1016/S0022-1139(99)00281-X>
56. Raju B. R., Pramod Kumar E. K., Saikia A. K.: Tetrahedron Lett. 2006, 47, 9245. <https://doi.org/10.1016/j.tetlet.2006.10.145>
57. Shavrin K. N., Gvozdev V. D., Nefedov O. M.: Russ. Chem. Bull. 2002, 51, 1237. <https://doi.org/10.1023/A:1020952513679>
58. Zhao G., Yang J., Huang W.-Y.: J. Fluorine Chem. 1997, 86, 89. <https://doi.org/10.1016/S0022-1139(97)00067-5>
59a. Vanderhaar R. W., Burton D. J., Naae D. G.: J. Fluorine Chem. 1971/1972, 1, 381. <https://doi.org/10.1016/S0022-1139(00)83239-X>
59b. Burton D. J.: J. Fluorine Chem. 1983, 23, 339. <https://doi.org/10.1016/S0022-1139(00)81218-X>
59c. Burton D. J.: Chem. Rev. 1996, 96, 1641. <https://doi.org/10.1021/cr941140s>
60a. Lei X., Dutheuil G., Pannecoucke X., Quirion J.-C.: Org. Lett. 2004, 6, 2101. <https://doi.org/10.1021/ol049742d>
60b. Zhang H., Xu Y., Zhang Z., Liman E. R., Prestwich G. D.: J. Am. Chem. Soc. 2006, 128, 5642. <https://doi.org/10.1021/ja060621d>
61. Chen C., Wilcoxen K., Huang C. Q., Strack N., McCarthy J. R.: J. Fluorine Chem. 2000, 101, 285. <https://doi.org/10.1016/S0022-1139(99)00172-4>
62a. Xu J., Burton D. J.: J. Org. Chem. 2006, 71, 3743. <https://doi.org/10.1021/jo060068i>
62b. Xu J., Burton D. J.: Tetrahedron Lett. 2002, 43, 2877. <https://doi.org/10.1016/S0040-4039(02)00357-X>
62c. Chen C., Wilcoxen K., Strack N., McCarthy J. R.: Tetrahedron Lett. 1999, 40, 827. <https://doi.org/10.1016/S0040-4039(98)02589-1>
63a. Waschbüsch R., Carran J., Savignac P.: Tetrahedron 1996, 52, 14199. <https://doi.org/10.1016/0040-4020(96)00859-9>
63b. Zhang X., Burton D. J.: J. Fluorine Chem. 2001, 112, 47. <https://doi.org/10.1016/S0022-1139(01)00482-1>
64a. Wang Y., Burton D. J.: Tetrahedron Lett. 2006, 47, 9279. <https://doi.org/10.1016/j.tetlet.2006.10.100>
64b. Eddarir S., Francesch C., Mestdagh H., Rolando C.: Bull. Soc. Chim. Fr. 1997, 134, 741.
65a. Xu J., Burton D. J.: Org. Lett. 2002, 4, 831. <https://doi.org/10.1021/ol025506w>
65b. Xu J., Burton D. J.: J. Org. Chem. 2005, 70, 4346. <https://doi.org/10.1021/jo050314a>
66. Galli C., Guarnieri A., Koch H., Mencarelli P., Rappoport Z.: J. Org. Chem. 1997, 62, 4072. <https://doi.org/10.1021/jo962373h>
67. Dutheuil G., Paturel C., Lei X., Couve-Bonnaire S., Pannecoucke X.: J. Org. Chem. 2006, 71, 4316. <https://doi.org/10.1021/jo0604787>
68. Dutheuil G., Bailly L., Couve-Bonnaire S., Pannecoucke X.: J. Fluorine Chem. 2007, 128, 34. <https://doi.org/10.1016/j.jfluchem.2006.09.013>
69. Zhang X., Burton D. J.: J. Fluorine Chem. 2001, 112, 317. <https://doi.org/10.1016/S0022-1139(01)00529-2>
70a. Xu J., Wang Y., Burton D. J.: Org. Lett. 2006, 8, 2555. <https://doi.org/10.1021/ol060785z>
70b. Wang Y., Xu J., Burton D. J.: J. Org. Chem. 2006, 71, 7780. <https://doi.org/10.1021/jo061305k>
71. Saito A., Nakagawa M., Taguchi T.: J. Fluorine Chem. 2005, 126, 1166. <https://doi.org/10.1016/j.jfluchem.2005.05.003>
72. Eddarir S., Abdelhadi Z., Rolando C.: Tetrahedron Lett. 2001, 42, 9127. <https://doi.org/10.1016/S0040-4039(01)01800-7>
73. Shastin A. V., Muzalevsky V. M., Balenkova E. S., Nenajdenko V. G.: Mendeleev Commun. 2006, 179. <https://doi.org/10.1070/MC2006v016n03ABEH002282>
74. Nenajdenko V. G., Muzalevsky V. M., Shastin A. V., Balenkova E. S., Haufe G.: J. Fluorine Chem. 2007, 128, 818. <https://doi.org/10.1016/j.jfluchem.2007.02.014>
75a. El-Khoury M., Wang Q., Schlosser M.: Tetrahedron Lett. 1996, 37, 9047. <https://doi.org/10.1016/S0040-4039(96)02084-9>
75b. Wang Q., Wei H.-X., Schlosser M.: Eur. J. Org. Chem. 1999, 3263. <https://doi.org/10.1002/(SICI)1099-0690(199912)1999:12<3263::AID-EJOC3263>3.0.CO;2-U>
75c. Du Z., Haglund M. J., Pratt L. A., Erickson K. L.: J. Org. Chem. 1998, 63, 8880. <https://doi.org/10.1021/jo9810866>
75d. Burton D. J., Wiemers D. M.: J. Fluorine Chem. 1985, 27, 85. <https://doi.org/10.1016/S0022-1139(00)80900-8>
75e. Manfré F., Kern J.-M., Biellmann J.-F.: J. Org. Chem. 1992, 57, 2060. <https://doi.org/10.1021/jo00033a029>
76a. Khrimian A. P., DeMilo A. B., Waters R. M., Liquido N. J., Nicholson J. M.: J. Org. Chem. 1994, 59, 8034. <https://doi.org/10.1021/jo00105a019>
76b. Inbasekaran M., Peet N. P., McCarthy J. R., LeTourneau M. E.: Chem. Commun. 1985, 678. <https://doi.org/10.1039/c39850000678>
77. McCarthy J. R., Matthews D. P., Edwards M. L., Stemerick D. M., Jarvi E. T.: Tetrahedron Lett. 1990, 31, 5449. <https://doi.org/10.1016/S0040-4039(00)97869-9>
78. Shimizu M., Ohno A., Yamada S.: Chem. Pharm. Bull. 2001, 49, 312. <https://doi.org/10.1248/cpb.49.312>
79. Li Y., Ni C., Liu J., Zhang L., Zheng J., Zhu L., Hu J.: Org. Lett. 2006, 8, 1693. <https://doi.org/10.1021/ol060322t>
80. Ni C., Li Y., Hu J.: J. Org. Chem. 2006, 71, 6829. <https://doi.org/10.1021/jo060955l>
81a. McCarthy J. R., Huber E. W., Le T.-B., Laskovics F. M., Matthews D. P.: Tetrahedron 1996, 52, 45. <https://doi.org/10.1016/0040-4020(95)00911-Q>
81b. Miller S. C., McCarthy J. R., Sabol J. S.: Nucleosides Nucleotides 1998, 17, 1099. <https://doi.org/10.1080/07328319808004223>
82. Andrei D., Wnuk S. F.: J. Org. Chem. 2006, 71, 405. <https://doi.org/10.1021/jo051980e>
83a. Chen C., Wilcoxen K., Zhu Y.-F., Kim K.-I., McCarthy J. R.: J. Org. Chem. 1999, 64, 3476. <https://doi.org/10.1021/jo982200n>
83b. Chen C., Wilcoxen K., Kim K.-I., McCarthy J. R.: Tetrahedron Lett. 1997, 38, 7677. <https://doi.org/10.1016/S0040-4039(97)10003-X>
84. Wnuk S. F., Garcia P. I., Jr., Wang Z.: Org. Lett. 2004, 6, 2047. <https://doi.org/10.1021/ol049312n>
85. Berkowitz D. B., de la Salud-Bea R., Jahng W.-J.: Org. Lett. 2004, 6, 1821. <https://doi.org/10.1021/ol049422u>
86. van Steenis J. H., Boer P. W. S., van der Hoeven H. A., van der Gen A.: Eur. J. Org. Chem. 2001, 911. <https://doi.org/10.1002/1099-0690(200103)2001:5<911::AID-EJOC911>3.0.CO;2-Q>
87. Zhang X., Qiu W., Burton D. J.: Tetrahedron Lett. 1999, 40, 2681. <https://doi.org/10.1016/S0040-4039(99)00305-6>
88. Zhang X., Qiu W., Burton D. J.: J. Fluorine Chem. 1998, 89, 39. <https://doi.org/10.1016/S0022-1139(98)00084-0>
89. Matthews D. P., Wald P. P., Sabol J. S., McCarthy J. R.: Tetrahedron Lett. 1994, 35, 5177. <https://doi.org/10.1016/S0040-4039(00)77057-2>
90. Gharat L. A., Martin A. R.: Heterocycles 1996, 43, 185.
91. Hanamoto T., Kobayashi T.: J. Org. Chem. 2003, 68, 6354. <https://doi.org/10.1021/jo030111r>
92. Hanamoto T., Harada S., Shindo K., Kondo M.: Chem. Commun. 1999, 2397. <https://doi.org/10.1039/a907978e>
93. Hanamoto T., Korekoda K., Nakata K., Handa K., Koga Y., Kondo M.: J. Fluorine Chem. 2002, 118, 99. <https://doi.org/10.1016/S0022-1139(02)00198-7>
94a. Hanamoto T., Shindo K., Matsuoka M., Kiguchi Y., Kondo M.: J. Chem. Soc., Perkin Trans. 1 2000, 103. <https://doi.org/10.1039/a905878h>
94b. Hanamoto T., Kiguchi Y., Shindo K., Matsuoka M., Kondo M.: Chem. Commun. 1999, 151. <https://doi.org/10.1039/a807933a>
95a. Hanamoto T., Suetake T., Koga Y., Kawanami T., Furuno H., Inanaga J.: Tetrahedron 2007, 63, 5062. <https://doi.org/10.1016/j.tet.2007.03.117>
95b. Hanamoto T., Koga Y., Kido E., Kawanami T., Furuno H., Inanaga J.: Chem. Commun. 2005, 2041. <https://doi.org/10.1039/b419329f>
96. Wu K., Chen Q.-Y.: Tetrahedron 2002, 58, 4077. <https://doi.org/10.1016/S0040-4020(02)00257-0>
97. Brown S. J., Corr S., Percy J. M.: Tetrahedron Lett. 2000, 41, 5269. <https://doi.org/10.1016/S0040-4039(00)00804-2>
98. Kanai M., Percy J. M.: Tetrahedron Lett. 2000, 41, 2453. <https://doi.org/10.1016/S0040-4039(00)00154-4>
99. Bainbridge J. M., Corr S., Kanai M., Percy J. M.: Tetrahedron Lett. 2000, 41, 971. <https://doi.org/10.1016/S0040-4039(99)02184-X>
100. Percy J. M., Wilkes R. D.: Tetrahedron 1997, 53, 14749. <https://doi.org/10.1016/S0040-4020(97)00986-1>
101. Ichikawa J., Wada Y., Fujiwara M., Sakoda K.: Synthesis 2002, 1917. <https://doi.org/10.1055/s-2002-33912>
102. Ichikawa J., Fujiwara M., Wada Y., Okauchi T., Minami T.: Chem. Commun. 2000, 1887. <https://doi.org/10.1039/b004978f>
103. Ichikawa J., Wada Y., Kuroki H., Mihara J., Nadano R.: Org. Biomol. Chem. 2007, 5, 3956. <https://doi.org/10.1039/b712965c>
104. Paleta O., Volkov A., Hetflejš J.: J. Fluorine Chem. 2000, 102, 147. <https://doi.org/10.1016/S0022-1139(99)00235-3>
105. Amin M. R., Harper D. B., Moloney J. M., Murphy C. D., Howard J. A. K., O’Hagan D.: Chem. Commun. 1997, 1471. <https://doi.org/10.1039/a703121a>
106. Zhang H.-Z., Rao K., Carr S. F., Papp E., Straub K., Wu J. C., Fried J.: J. Med. Chem. 1997, 40, 4. <https://doi.org/10.1021/jm960732v>
107. Myers A. G., McKinstry L., Barbay J. K., Gleason J. L.: Tetrahedron Lett. 1998, 39, 1335. <https://doi.org/10.1016/S0040-4039(98)00152-X>
108. Myers A. G., Barbay J. K., Zhong B.: J. Am. Chem. Soc. 2001, 123, 7207. <https://doi.org/10.1021/ja010113y>
109. van Steenis J. H., van den Nieuwendijk A. M. C. H., van der Gen A.: J. Fluorine Chem. 2004, 125, 107. <https://doi.org/10.1016/j.jfluchem.2003.11.001>
110. Huang X.-T., Chen Q.-Y.: J. Org. Chem. 2002, 67, 3231. <https://doi.org/10.1021/jo010820+>
111. Ocampo R., Dolbier W. R., Jr., Abboud K. A., Zuluaga F.: J. Org. Chem. 2002, 67, 72. <https://doi.org/10.1021/jo015778x>
112. Katritzky A. R., Nichols D. A., Qi M.: Tetrahedron Lett. 1998, 39, 7063. <https://doi.org/10.1016/S0040-4039(98)01520-2>
113. Wilde J., Eggerer H.: Liebigs Ann. Chem. 1997, 581. <https://doi.org/10.1002/jlac.199719970320>
114. Qiu Y., Li D.: Biochim. Biophys. Acta 2006, 1760, 1080. <https://doi.org/10.1016/j.bbagen.2006.03.009>
115. Inagaki H., Sugita K., Miyauchi R. N., Miyauchi S., Takeda T., Itoh M., Takahashi H., Takemura M.: ARKIVOC 2003, N 8, 112. <https://doi.org/10.3998/ark.5550190.0004.812>
116. Long Z.-Y., Chen Q. Y.: J. Org. Chem. 1999, 64, 4775. <https://doi.org/10.1021/jo9900937>
117. Jean-Baptiste L., Yemets S., Legay R., Lequeux T.: J. Org. Chem. 2006, 71, 2352. <https://doi.org/10.1021/jo052528y>
118. Wang Y., Yang Z.-Y., Burton D. J.: Tetrahedron Lett. 1992, 33, 2137. <https://doi.org/10.1016/0040-4039(92)88160-7>
119. Zhi C., Chen Q. Y.: J. Chem. Soc., Perkin Trans. 1 1996, 1741. <https://doi.org/10.1039/p19960001741>
120. Saito A., Ito H., Taguchi T.: Tetrahedron 2001, 57, 7487. <https://doi.org/10.1016/S0040-4020(01)00726-8>
121a. Takeuchi Y., Kirihara K., Kirk K. L., Shibata N.: Chem. Commun. 2000, 785. <https://doi.org/10.1039/b001265n>
121b. Takeuchi Y., Kamezaki M., Kirihara K., Haufe G., Laue K. W., Shibata N.: Chem. Pharm. Bull. 1998, 46, 1062. <https://doi.org/10.1248/cpb.46.1062>
122. Annedi S. C., Li W., Samson S., Kotra L. P.: J. Org. Chem. 2003, 68, 1043. <https://doi.org/10.1021/jo026310c>
123. Verniest G., Colpaert F., Van Hende E., De Kimpe N.: J. Org. Chem. 2007, 72, 8569. <https://doi.org/10.1021/jo071253e>
124. Choudary B. M., Mahendar K., Kantam M. L., Ranganath K. V. S., Athar T.: Adv. Synth. Catal. 2006, 348, 1977. <https://doi.org/10.1002/adsc.200606001>
125. Ishihara T., Kuroboshi M.: Chem. Lett. 1987, 1145. <https://doi.org/10.1246/cl.1987.1145>
126a. Falck J. R., Bejot R., Barma D. K., Bandyopadhyay A., Joseph S., Mioskowski C.: J. Org. Chem. 2006, 71, 8178. <https://doi.org/10.1021/jo061445u>
126b. Barma D. K., Kundu A., Zhang H., Mioskowski C., Falck J. R.: J. Am. Chem. Soc. 2003, 125, 3218. <https://doi.org/10.1021/ja029938d>
127. Khambay B. P. S., Farnham A. W., Liu M. G.: Pestic. Sci. 1999, 55, 703. <https://doi.org/10.1002/(SICI)1096-9063(199907)55:7<703::AID-PS17>3.0.CO;2-4>
128a. Iseki K., Kuroki Y., Kobayashi Y.: Tetrahedron Lett. 1997, 38, 7209. <https://doi.org/10.1016/S0040-4039(97)01717-6>
128b. Iseki K., Kuroki Y., Kobayashi Y.: Tetrahedron 1999, 55, 2225. <https://doi.org/10.1016/S0040-4020(99)00005-8>
129. Mima K., Ishihara T., Kuwahata S., Konno T., Yamanaka H.: Chem. Lett. 2002, 192. <https://doi.org/10.1246/cl.2002.192>
130. Zoute L., Lacombe C., Quirion J.-C., Charette A. B., Jubault P.: Tetrahedron Lett. 2006, 47, 7931. <https://doi.org/10.1016/j.tetlet.2006.09.008>
131a. Sano S., Teranishi R., Nagai Y.: Tetrahedron Lett. 2002, 43, 9183, and references therein. <https://doi.org/10.1016/S0040-4039(02)02269-4>
131b. Kim A., Hong J. H.: Eur. J. Med. Chem. 2007, 42, 487. <https://doi.org/10.1016/j.ejmech.2006.11.002>
131c. Engman M., Diesen J. S., Paptchikhine A., Andersson P. G.: J. Am. Chem. Soc. 2007, 129, 4536. <https://doi.org/10.1021/ja0686763>
131d. Hong H. J., Kim H. O., Moon H. R., Jeong L. S.: Arch. Pharm. Res. 2001, 24, 95. <https://doi.org/10.1007/BF02976474>
131e. Sano S., Kuroda Y., Saito K., Ose Y., Nagao Y.: Tetrahedron 2006, 62, 11881. <https://doi.org/10.1016/j.tet.2006.09.096>
131f. Deng G. S., Liu C. Y.: Chin. Chem. Lett. 2006, 17, 329.
131g. Raju B., Anandan S., Gu S., Herradura P., O’Dowd H., Kim B., Gomez M., Hackbarth C., Wu C., Wang W., Yuan Z., White R., Trias J., Patel D. V.: Bioorg. Med. Chem. Lett. 2004, 14, 3103. <https://doi.org/10.1016/j.bmcl.2004.04.036>
131h. Johnson W. H., Jr., Wang S. C., Stanley T. M., Czerwinski R. M., Almrud J. J., Poelarends G. J., Murzin A. G., Whitman C. P.: Biochemistry 2004, 43, 10490. <https://doi.org/10.1021/bi049489p>
131i. Tsai H.-J.: J. Chin. Chem. Soc. 1998, 45, 543. <https://doi.org/10.1002/jccs.199800082>
131j. Sano S., Yokoyama K., Shiro M., Nagao Y.: Chem. Pharm. Bull. 2002, 50, 706. <https://doi.org/10.1248/cpb.50.706>
131k. Pomeisl K., Čejka J., Kvíčala J., Paleta O.: Eur. J. Org. Chem. 2007, 5917. <https://doi.org/10.1002/ejoc.200700439>
131l. Pomeisl K., Kvíčala J., Paleta O., Klásek A., Kafka S., Kubelka V., Havlíček J., Čejka J.: Tetrahedron 2007, 63, 10549. <https://doi.org/10.1016/j.tet.2007.07.058>
131m. Nikolova G. S., Haufe G.: Synthesis 2008, 527.
131n. Nikolova G. S., Zhang L., Chen X., Chi L., Haufe G.: Colloids Surf., A 2008, 317, 414. <https://doi.org/10.1016/j.colsurfa.2007.11.013>
132a. Machleidt H., Wessendorf R.: Ann. Chem. 1964, 674, 1. <https://doi.org/10.1002/jlac.19646740102>
132b. Kiddle J. J., Gurley A. F.: Phosphorus Sulfur 2000, 160, 195. <https://doi.org/10.1080/10426500008043680>
133. Fokin A. V., Zimin V. I., Studnev Y. N., Rapkin A. I.: Zh. Org. Khim. 1971, 7, 249; Chem. Abstr. 971, 74, 124736.
134. Waschbüsch R., Carran J., Savignac P.: Tetrahedron 1997, 53, 6391. <https://doi.org/10.1016/S0040-4020(97)00312-8>
135. Kvíčala J., Vlasáková R., Plocar J., Paleta O., Pelter A.: Collect. Czech. Chem. Commun. 2000, 65, 772. <https://doi.org/10.1135/cccc20000772>
136. Marma M. S., Khawli L. A., Harutunian V., Kashemirov B. A., McKenna C. E.: J. Fluorine Chem. 2005, 126, 1467. <https://doi.org/10.1016/j.jfluchem.2005.04.002>
137. Pomeisl K., Kvíčala J., Paleta O.: J. Fluorine Chem. 2006, 127, 1390. <https://doi.org/10.1016/j.jfluchem.2006.05.012>
138. Sano S., Saito K., Nagao Y.: Tetrahedron Lett. 2003, 44, 3987. <https://doi.org/10.1016/S0040-4039(03)00778-0>
139. Michellys P.-Y., Boehm M. F., Chen J. H., Grese T. A., Karanewsky D. S., Leibowitz M. D., Liu S., Mais D. A., Mapes C. M., Reifel-Miller A., Ogilvie K. M., Rungta D., Thompson A. W., Tyhonas J. S., Yumibe N., Ardecky R. J.: Bioorg. Med. Chem. Lett. 2003, 13, 4071. <https://doi.org/10.1016/j.bmcl.2003.08.048>
140. Park J.-H., Choi M.-H., Jeong L. S., Chun M. W., Kim H. D.: Nucleosides Nucleotides Nucleic Acids 2003, 22, 955. <https://doi.org/10.1081/NCN-120022694>
141. Shinada T., Sekiya N., Bojkova N., Yoshihara K.: Tetrahedron 1999, 55, 3675. <https://doi.org/10.1016/S0040-4020(98)01175-2>
142. Hallinan E. A., Kramer S. V., Houdek S. C., Moore W. M., Jerome G. M., Spangler D. P., Stevens A. M., Shieh H. S., Manning P. T., Pitzele B. S.: Org. Biomol. Chem. 2003, 1, 3527. <https://doi.org/10.1039/b307563j>
143. Percy E., Singh M., Takahashi T., Takeuchi Y., Kirk K. L.: J. Fluorine Chem. 1998, 91, 5. <https://doi.org/10.1016/S0022-1139(98)00196-1>
144. Kim B. T., Min Y. K., Asami T., Park N. K., Kwon O. Y., Cho K. Y., Yoshida S.: J. Agric. Food Chem. 1999, 47, 313. <https://doi.org/10.1021/jf980265l>
145. Sano S., Yokoyama K., Teranishi R., Shiro M., Nagao Y.: Tetrahedron Lett. 2002, 43, 281. <https://doi.org/10.1016/S0040-4039(01)02135-9>
146a. Kim D. Y., Rhie D. Y., Oh D. Y.: Tetrahedron Lett. 1996, 37, 653. <https://doi.org/10.1016/0040-4039(95)02224-4>
146b. Kim D. Y., Lee Y. M., Choi Y. J.: Tetrahedron 1999, 55, 12983. <https://doi.org/10.1016/S0040-4020(99)00807-8>
147. Yoshimatsu M., Murase Y., Itoh A., Tanabe G., Muraoka O.: Chem. Lett. 2005, 34, 998. <https://doi.org/10.1246/cl.2005.998>
148. See e.g.: 1001d, pp. 223–250, 1001g, pp. 25–76, 1001h, pp. 69–82.
149. De Matteis V., van Delft F. L., Tiebes J., Rutjes F. P. J. T.: Eur. J. Org. Chem. 2006, 1166. <https://doi.org/10.1002/ejoc.200500826>
150. Laue K. W., Haufe G.: Synthesis 1998, 1453. <https://doi.org/10.1055/s-1998-2174>
151. Bravo P., Frigerio M., Ono T., Panzeri W., Pesenti C., Sekine A., Viani F.: Eur. J. Org. Chem. 2000, 1387. <https://doi.org/10.1002/(SICI)1099-0690(200004)2000:8<1387::AID-EJOC1387>3.0.CO;2-G>
152. Ambrosi P., Arnone A., Bravo P., Bruché L., De Cristofaro A., Francardi V., Frigerio M., Gatti E., Germinara G. S., Walter P., Pennacchio F., Pesenti C., Rotundo G., Roversi P. F., Salvadori C., Viani F., Zanda M.: J. Org. Chem. 2001, 66, 8336. <https://doi.org/10.1021/jo0055640>
153a. Yamanaka H., Odani Y., Ishihara T., Konno T., Gupton J. T.: J. Fluorine Chem. 2001, 108, 199. <https://doi.org/10.1016/S0022-1139(01)00349-9>
153b. Arimitsu S., Konno T., Gupton J. T., Ishihara T., Yamanaka H.: J. Fluorine Chem. 2006, 127, 1235. <https://doi.org/10.1016/j.jfluchem.2006.07.001>
153c. Yamanaka H., Hisaki K., Kase K., Ishihara T.: Tetrahedron Lett. 1998, 39, 4355. <https://doi.org/10.1016/S0040-4039(98)00794-1>
154. Zhang F., Song Z. J., Tschaen D., Volante R. P.: Org. Lett. 2004, 6, 3775. <https://doi.org/10.1021/ol0484512>
155. Delarue-Cochin S., Bahlaouan B., Hendra F., Ourévitch M., Joseph D., Morgant G., Cavé C.: Tetrahedron: Asymmetry 2007, 18, 759. <https://doi.org/10.1016/j.tetasy.2007.03.020>
156. Saito A., Okada M., Nakamura Y., Kitagawa O., Horikawa H., Taguchi T.: J. Fluorine Chem. 2003, 123, 75. <https://doi.org/10.1016/S0022-1139(03)00138-6>
157. Kvíčala J., Plocar J., Vlasáková R., Paleta O., Pelter A.: Synlett 1997, 986. <https://doi.org/10.1055/s-1997-929>
158a. Meyer O. G. J., Fröhlich R., Haufe G.: Synthesis 2000, 1479. <https://doi.org/10.1055/s-2000-7103>
158b. Wong A., Welch C. J., Kuethe J. T., Vazquez E., Shaimi M., Henderson D., Davies I. W., Hughes D. L.: Org. Biomol. Chem. 2004, 2, 168. <https://doi.org/10.1039/b312180c>
158c. Ye S., Yoshida S., Fröhlich R., Haufe G., Kirk K. L.: Bioorg. Med. Chem. 2005, 13, 2489. <https://doi.org/10.1016/j.bmc.2005.01.043>
158d. Guseva E. V., Volchkov N. V., Tomilov Y. V., Nefedov O. M.: Eur. J. Org. Chem. 2004, 3136. <https://doi.org/10.1002/ejoc.200400109>
158e. Lin W., Charette A. B.: Adv. Synth. Catal. 2005, 347, 1547. <https://doi.org/10.1002/adsc.200505187>
158f. Cheng D., Kreethadumrongdat T., Cohen T.: Org. Lett. 2001, 3, 2121. <https://doi.org/10.1021/ol016086y>
158g. Hruschka S., Fröhlich R., Kirsch P., Haufe G.: Eur. J. Org. Chem. 2007, 141. <https://doi.org/10.1002/ejoc.200600579>
158h. Rosen T. C., Yoshida S., Fröhlich R., Kirk K. L., Haufe G.: J. Med. Chem. 2004, 47, 5860. <https://doi.org/10.1021/jm049957t>
159. Usuki Y., Fukuda Y., Iio H.: ITE Lett. Batteries, New Technol. Med. 2001, 2, 237; Chem. Abstr. 2001, 136, 184068.
160. Haufe G., Rosen T. C., Meyer O. G. J., Fröhlich R., Rissanen K.: J. Fluorine Chem. 2002, 114, 189. <https://doi.org/10.1016/S0022-1139(02)00040-4>
161. Gauzy C., Saby B., Pereira E., Faure S., Aitken D. J.: Synlett 2006, 1394.
162a. Ohkura K., Ishihara T., Nishijima K.-I., Diakur J. M., Seki K.-I.: Chem. Pharm. Bull. 2005, 53, 258. <https://doi.org/10.1248/cpb.53.258>
162b. Ohkura K., Sugaoi T., Ishihara T., Seki K.-I.: Heterocycles 2004, 64, 57. <https://doi.org/10.3987/COM-04-S(P)36>
163. Fang X., Wu Y.-M., Deng J., Wang S. W.: Tetrahedron 2004, 60, 5487. <https://doi.org/10.1016/j.tet.2004.04.012>
164. Wu K., Chen Q.-Y.: J. Fluorine Chem. 2003, 122, 171. <https://doi.org/10.1016/S0022-1139(03)00055-1>
165. Kotikyan Y. A., Dyatkin B. L., Konstantinov Y. S.: Izv. Akad. Nauk SSSR, Ser. Khim. 1971, 358; Russ. Chem. Bull. 1971, 20, 292;.
166. Ito H., Saito A., Taguchi T.: Tetrahedron: Asymmetry 1998, 9, 1979. <https://doi.org/10.1016/S0957-4166(98)00195-5>
167a. Ito H., Saito A., Kakuuchi A., Taguchi T.: Tetrahedron 1999, 55, 12741. <https://doi.org/10.1016/S0040-4020(99)00785-1>
167b. Essers M., Mück-Lichtenfeld C., Haufe G.: J. Org. Chem. 2002, 67, 4715. <https://doi.org/10.1021/jo015917a>
167c. Essers M., Ernet T., Haufe G.: J. Fluorine Chem. 2003, 121, 163. <https://doi.org/10.1016/S0022-1139(03)00010-1>
168. Saito A., Yanai H., Sakamoto W., Takahashi K., Taguchi T.: J. Fluorine Chem. 2005, 126, 709. <https://doi.org/10.1016/j.jfluchem.2005.01.019>
169. Gorgues A., Stéphan D., Cousseau J.: Chem. Commun. 1989, 1493. <https://doi.org/10.1039/c39890001493>
170. Essers M., Wibbeling B., Haufe G.: Tetrahedron Lett. 2001, 42, 5429. <https://doi.org/10.1016/S0040-4039(01)01056-5>
171. de Meijere A., Teichmann S., Seyed-Mahdavi F., Kohlstruk S.: Liebigs Ann. Chem. 1996, 1989. <https://doi.org/10.1002/jlac.199619961208>
172. Crowley P. J., Percy J. M., Stansfield K.: Tetrahedron Lett. 1996, 37, 8237. <https://doi.org/10.1016/0040-4039(96)01877-1>
173. Ernet T., Haufe G.: Tetrahedron Lett. 1996, 37, 7251. <https://doi.org/10.1016/0040-4039(96)01643-7>
174. Sridhar M., Krishna K. L., Rao J. M.: Tetrahedron 2000, 56, 3539. <https://doi.org/10.1016/S0040-4020(00)00242-8>
175a. Ohkura K., Kudo M., Ishihara T., Nishijima K.-I., Seki K.-I.: Heterocycles 2005, 65, 2583. <https://doi.org/10.3987/COM-05-10520>
175b. Ohkura K., Sugaoi T., Ishihara T., Aizawa K., Nishijima K.-I., Kuge Y., Seki K.-I.: Heterocycles 2003, 61, 377.
175c. Ohkura K., Ishihara T., Nishijima K.-I., Diakur J. M., Seki K.-I.: Heterocycles 2006, 69, 515. <https://doi.org/10.3987/COM-06-S(O)41>
175d. Ohkura K., Sugaoi T., Sakushima A., Nishijima K.-I., Kuge Y., Seki K.-I.: Heterocycles 2002, 58, 595.
175e. Ohkura K., Sugaoi T., Nishijima K.-I., Kuge Y., Seki K.-I.: Tetrahedron Lett. 2002, 43, 3113. <https://doi.org/10.1016/S0040-4039(02)00492-6>
176. Jeong I. H., Kim Y. S., Cho K. Y.: Bull. Korean Chem. Soc. 1990, 11, 178.
177. Gu Y., Hama T., Hammond G. B.: Chem. Commun. 2000, 395. <https://doi.org/10.1039/a909594b>
178. Hajduch J., Paleta O., Kvíčala J., Haufe G.: Eur. J. Org. Chem. 2007, 5101. <https://doi.org/10.1002/ejoc.200700543>
179. Essers M., Haufe G.: J. Chem. Soc., Perkin Trans. 1 2002, 2719. <https://doi.org/10.1039/b208001j>
180. Patrick T. B., Rogers J., Gorrell K.: Org. Lett. 2002, 4, 3155. <https://doi.org/10.1021/ol026512v>
181. Patrick T. B., Gorrell K., Rogers J.: J. Fluorine Chem. 2007, 128, 710. <https://doi.org/10.1016/j.jfluchem.2007.03.010>
182. Dmowski W., Manko V. A., Nowak I.: J. Fluorine Chem. 1998, 88, 143. <https://doi.org/10.1016/S0022-1139(98)00109-2>
183. Patrick T. B., Yu H., Taylor D., Gorrell K.: J. Fluorine Chem. 2004, 125, 1965. <https://doi.org/10.1016/j.jfluchem.2004.06.007>
184. Müller G. H., Lang A., Seithel D. R., Waldmann H.: Chem. Eur. J. 1998, 4, 2513. <https://doi.org/10.1002/(SICI)1521-3765(19981204)4:12<2513::AID-CHEM2513>3.0.CO;2-4>