Collect. Czech. Chem. Commun.
2008, 73, 1525-1551
https://doi.org/10.1135/cccc20081525
Coupled Cluster Study of Polycyclopentanes: Structure and Properties of C5H2n, n = 0-4
Libor Veisa, Petr Čárskya, Jiří Pittnera and Josef Michlb,a,*
a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Dolejškova 3, 182 23 Prague 8, Czech Republic
b Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, U.S.A.
References
1. Prakt. Chem. 1882, 26, 367.
< A. J.: https://doi.org/10.1002/prac.18820260125>
2. J. Am. Chem. Soc. 1982, 104, 5239.
< K. B., Walker F. H.: https://doi.org/10.1021/ja00383a046>
3. J. Am. Chem. Soc. 1966, 88, 4437.
< K. B., Connor D. S.: https://doi.org/10.1021/ja00971a025>
4. J. Am. Chem. Soc. 1977, 99, 4851.
< G. D., Baldwin J. E.: https://doi.org/10.1021/ja00456a066>
5. Chem. Rev. 2000, 100, 169.
< M. D., Kaszynski P., Michl J.: https://doi.org/10.1021/cr990094z>
6. Pure Appl. Chem. 1988, 60, 189.
< V., Michl J.: https://doi.org/10.1351/pac198860020189>
7. J. Am. Chem. Soc. 1981, 103, 4458.
< P., Gund T. M.: https://doi.org/10.1021/ja00405a028>
8. Finn. Chem. Lett. 1989, 16, 107.
M., Nevalainen V., Pyykkö P.:
9. J. Mol. Struct. (THEOCHEM) 1998, 423, 173.
< E.: https://doi.org/10.1016/S0166-1280(97)00118-8>
10. J. Mol. Struct. (THEOCHEM) 2000, 507, 165.
< E.: https://doi.org/10.1016/S0166-1280(99)00383-8>
11. J. Am. Chem. Soc. 2000, 122, 8490.
< O., Walsh R., Szeimies G.: https://doi.org/10.1021/ja994043v>
12. J. Phys. Chem. A 2001, 105, 7745.
< J. P., Krueger K. M., Rienstra-Kiracofe J. C., Schaefer H. F.: https://doi.org/10.1021/jp011642r>
13. Phys. Chem. Chem. Phys. 2001, 3, 1986.
< M., Dodziuk H., Jaszuński M., Lukin O., Leszczyński J.: https://doi.org/10.1039/b100441g>
14. J. Mol. Struct. (THEOCHEM) 2003, 626, 223.
< A., Deyhimi F., Roohi H.: https://doi.org/10.1016/S0166-1280(03)00106-4>
15. J. Phys. Chem. A 2004, 108, 507.
< I., Kinal A., Balci M.: https://doi.org/10.1021/jp036792b>
16. Int. J. Quantum Chem. 2004, 96, 411.
< S. R., Qin C. Y., Zhao Z. D.: https://doi.org/10.1002/qua.10734>
17. Magn. Reson. Chem. 2004, 42, 1.
< L. B.: https://doi.org/10.1002/mrc.1312>
18. J. Comput. Chem. 2006, 28, 857.
< V., Andres J., Silvi B.: https://doi.org/10.1002/jcc.20615>
19. Lewars E.: Modelling Marvels. Computational Anticipation of Novel Molecules. Chap. 13. Springer, Netherlands 2008.
20. J. Chem. Phys. 1989, 90, 1007.
< T. H.: https://doi.org/10.1063/1.456153>
21. https://bse.pnl.gov/bse/portal (8. 4. 2008).
22. Chem. Rev. 1999, 99, 293.
< T., Jaszuński M., Ruud K.: https://doi.org/10.1021/cr960017t>
23. J. Chem. Phys. 1982, 76, 1919.
< M., Kutzelnigg W.: https://doi.org/10.1063/1.443165>
24. J. Chem. Phys. 2006, 124, 144112.
< O., Pittner J.: https://doi.org/10.1063/1.2192508>
25. J. Chem. Phys. 2000, 112, 8779.
< I., Pittner J., Čársky P.: https://doi.org/10.1063/1.481493>
26. J. Phys. Chem. Ref. Data 1985, 14, 1.
M. W., Davies C. A., Downey J. R., Frurip D. J., McDonald R. A., Syverud A. N.:
27. Aust. J. Chem. 1970, 23, 1421.
< M. J., Macdonald C. G., Pross A., Shannon J. S., Sternhell S.: https://doi.org/10.1071/CH9701421>
28. Pretsch E., Clerc T., Seibl J., Simon W.: Tabellen zur Strukturaufklärung Organischer Verbindungen mit Spektroskopischen Methoden. Springer, Berlin 1976.
29. http://www.aces2.de (8. 7. 2008).
30. J. Mol. Struct. (THEOCHEM) 2001, 547, 239.
< J., Šmydke J., Čársky P., Hubač I.: https://doi.org/10.1016/S0166-1280(01)00473-0>
31. J. Phys. Chem. A 2001, 105, 1354.
< J., Nachtigall P., Čársky P., Hubač I.: https://doi.org/10.1021/jp0032199>
32. J. Chem. Phys. 2003, 118, 10876.
< J.: https://doi.org/10.1063/1.1574785>
33. Stanton J., Gauss J., Watts J., Nooijen M., Oliphanta N., Perera S., Szalay P., Lauderdale W., Kucharski S., Gwaltney S., Beck S., Balková A., Bernholdt D., Baeck K., Rozyczko P., Sekino H., Hober C., Bartlett R.: ACES II, A Program Product of the Quantum Theory Project, University of Florida. Integral packages included are: VMOL (J. Almlöf and P. R. Taylor), VPROPS (P. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen and P. R. Taylor).
34. Werner H.-J., Knowles P. J., Lindh R., Manby F. R., Schütz M., Celani P., Korona T., Rauhut G., Amos R. D., Bernhardsson A., Berning A., Cooper D. L., Deegan M. J. O., Dobbyn A. J., Eckert F., Hampel C., Hetzer G., Lloyd A. W., McNicholas S. J., Meyer W., Mura M. E., Nicklass A., Palmieri P., Pitzer R., Schumann U., Stoll H., Stone A. J., Tarroni R., Thorsteinsson T.: MOLPRO, A Package of Ab initio Programs, version 2006.1 (2006), see http://www.molpro.net.
35. Mol. Phys. 1996, 89, 645.
< H. J.: https://doi.org/10.1080/002689796173967>
36. J. Chem. Phys. 2003, 119, 5044.
< P., Werner H. J.: https://doi.org/10.1063/1.1597672>
37. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford (CT) 2004.
38. Glendening E. D., Badenhoop J. K., Reed A. E., Carpenter J. E., Bohmann J. A., Morales C. M., Weinhold F.: NBO 3.1. Theoretical Chemistry Institute, University of Wisconsin, Madison 2001.
39. J. Am. Chem. Soc. 1994, 116, 750.
< J., Luthi H. P., Diedrich F.: https://doi.org/10.1021/ja00081a041>
40. J. Chem. Phys. 1994, 101, 853.
< P.: https://doi.org/10.1063/1.468090>
41. J. Phys. Chem. 1996, 100, 6047.
< J. M. L., Taylor P. R.: https://doi.org/10.1021/jp952471r>
42. J. Chem. Phys. 2007, 127, 154318.
< H., Veryazov V., Malmqvist P. A., Roos B. O., Senent M. L.: https://doi.org/10.1063/1.2759206>
43. Theor. Chem. Acc. 2002, 108, 240.
M., Dolgonos G., Dodziuk H.:
44. Int. J. Mol. Sci. 2003, 4, 143.
< M., Helgaker T.: https://doi.org/10.3390/i4030143>
45. J. Chem. Phys. 1994, 101, 844.
< M.: https://doi.org/10.1063/1.468086>
46. Chem. Phys. Lett. 1976, 37, 265.
< D., Ferretti L., Gallinella E.: https://doi.org/10.1016/0009-2614(76)80212-6>
47. J. Am. Chem. Soc. 1970, 92, 1614.
< J. F., Bauer S. H.: https://doi.org/10.1021/ja00709a032>
48. Acta Chem. Scand. 1971, 25, 1217.
< A., Andersen B., Nyhus B. A.: https://doi.org/10.3891/acta.chem.scand.25-1217>
49. J. Phys. Chem. 1992, 96, 8293.
< K. B., Rosenberg R. E., Waddell S. T.: https://doi.org/10.1021/j100200a017>
50. J. Am. Chem. Soc. 1985, 107, 7247.
< K. B., Dailey W. P., Walker F. H., Waddell S. T., Crocker L. S., Newton M.: https://doi.org/10.1021/ja00311a003>
51. J. Chem. Soc., Faraday Trans. 1995, 91, 4031.
< P., Malagoli M., Zanasi R., Della E. W., Lochert I. J., Giribet C. G., Deazua M. C. R., Contreras R. H.: https://doi.org/10.1039/ft9959104031>
52. Liebigs Ann. Chem. 1996, 1705.
< M., Stephenson D. S., Szeimies G.: https://doi.org/10.1002/jlac.199619961103>
53. Tetrahedron Lett. 1990, 31, 171.
< R. M., Cusumano L.: https://doi.org/10.1016/S0040-4039(00)94362-4>
54. Aust. J. Chem. 1981, 34, 913.
< E. W., Cotsaris E., Hine P. T., Pigou P. E.: https://doi.org/10.1071/CH9810913>
55. Chem. Ber. 1992, 125, 757.
< F., Szeimies G.: https://doi.org/10.1002/cber.19921250332>
56. J. Chem. Phys. 2004, 121, 1278.
< R., Gough K. M.: https://doi.org/10.1063/1.1764499>