Collect. Czech. Chem. Commun. 2008, 73, 1509-1524
https://doi.org/10.1135/cccc20081509

Calculations of Polarizabilities and Their Gradients for Electron Energy-Loss Spectroscopy

Ivana Paidarováa, Roman Čuríka,* and Stephan P. A. Sauerb

a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
b Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

References

1. Polášek M., Juřek M., Ingr M., Čársky P., Horáček J.: Phys. Rev. A 2000, 61, 032701. <https://doi.org/10.1103/PhysRevA.61.032701>
2. Čurík R., Čársky P.: J. Phys. B: At. Mol. Opt. Phys. 2003, 36, 2165. <https://doi.org/10.1088/0953-4075/36/11/303>
3. Čurík R., Čársky P., Allan M.: J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 115203. <https://doi.org/10.1088/0953-4075/41/11/115203>
4a. Linderberg J., Öhrn Y.: Propagators in Quantum Chemistry. Academic Press, London 1973.
4b. Oddershede J.: Adv. Quantum Chem. 1978, 2, 275. <https://doi.org/10.1016/S0065-3276(08)60240-3>
4c. Jørgensen P., Simons J.: Second Quantization-Based Methods in Quantum Chemistry. Academic Press, New York 1981.
4d. Oddershede J. in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, Eds), pp. 249–271. D. Reidel Publ. Co, Dordrecht 1983.
4e. Oddershede J.: Adv. Chem. Phys. 1987, 69, 201. <https://doi.org/10.1002/9780470142943.ch3>
4f. Oddershede J. in: Methods in Computational Molecular Physics (S. Wilson and G. H. F. Diercksen, Eds), pp. 303–324. Plenum Press, New York 1992.
5. Oddershede J., Jørgensen P., Yeager D. L.: Comput. Phys. Rep. 1984, 2, 33. <https://doi.org/10.1016/0167-7977(84)90003-0>
6. Sauer S. P. A., Packer M. J. in: Computational Molecular Spectroscopy (P. R. Bunker and P. Jensen, Eds), Chap. 7, pp. 221–252. John Wiley and Sons, London 2000.
7. Olsen J., Jørgensen P.: J. Chem. Phys. 1985, 82, 3235. <https://doi.org/10.1063/1.448223>
8a. Koch H., Jørgensen P.: J. Chem. Phys. 1990, 93, 3333. <https://doi.org/10.1063/1.458814>
8b. Christiansen O., Jørgensen P., Hättig C.: Int. J. Quantum Chem. 1998, 68, 1. <https://doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z>
9. Sadlej A. J.: Collect. Czech. Chem. Commun. 1988, 53, 1995. <https://doi.org/10.1135/cccc19881995>
10a. Peng H. W.: Proc. R. Soc. London, Ser. A. 1941, 178, 499. <https://doi.org/10.1098/rspa.1941.0071>
10b. Langhoff P. W., Epstein S. T., Karplus M.: Rev. Mod. Phys. 1972, 44, 602. <https://doi.org/10.1103/RevModPhys.44.602>
10c. McLachlan A. D., Ball M. A.: Rev. Mod. Phys. 1964, 36, 844. <https://doi.org/10.1103/RevModPhys.36.844>
10d. Rowe D. J.: Rev. Mod. Phys. 1968, 40, 153. <https://doi.org/10.1103/RevModPhys.40.153>
11. Casida M. E. in: Recent Development and Applications of Modern Density Functional Theory (M. J. Seminario, Ed.), p. 391. Elsevier, Amsterdam 1996.
12. Nielsen E. S., Jørgensen P., Oddershede J.: J. Chem. Phys. 1980, 73, 6238. <https://doi.org/10.1063/1.440119>
13a. Packer M. J., Dalskov E. K., Enevoldsen T., Jensen H. J. Aa., Oddershede J.: J. Chem. Phys. 1996, 105, 5886. <https://doi.org/10.1063/1.472430>
13b. Bak K. L., Koch H., Oddershede J., Christiansen O., Sauer S. P. A.: J. Chem. Phys. 2000, 112, 4173. <https://doi.org/10.1063/1.480963>
13c. Nielsen C. B., Sauer S. P. A., Mikkelsen K. V.: J. Chem. Phys. 2003, 119, 3849. <https://doi.org/10.1063/1.1587131>
13d. Olsen J., Jørgensen P., Helgaker T., Oddershede J.: J. Phys. Chem. A 2005, 109, 11618. <https://doi.org/10.1021/jp054207w>
14a. Sauer S. P. A., Diercksen G. H. F., Oddershede J.: Int. J. Quantum Chem. 1991, 39, 667. <https://doi.org/10.1002/qua.560390504>
14b. Parkinson W. A., Sauer S. P. A., Oddershede J., Bishop D. M.: J. Chem. Phys. 1993, 98, 487. <https://doi.org/10.1063/1.464643>
14c. Sauer S. P. A., Oddershede J.: Int. J. Quantum Chem. 1994, 50, 317. <https://doi.org/10.1002/qua.560500502>
14d. Packer M. J., Sauer S. P. A., Oddershede J.: J. Chem. Phys. 1994, 100, 8969. <https://doi.org/10.1063/1.466701>
14e. Packer M. J., Dalskov E. K., Sauer S. P. A., Oddershede J.: Theor. Chim. Acta 1994, 89, 323. <https://doi.org/10.1007/BF01114105>
15. Dalskov E. K., Sauer S. P. A.: J. Phys. Chem. A 1998, 102, 5269. <https://doi.org/10.1021/jp980436p>
16a. Sauer S. P. A., Oddershede J.: Int. J. Quantum Chem. 1994, 50, 317. <https://doi.org/10.1002/qua.560500502>
16b. Paidarová I., Sauer S. P. A.: Adv. Quantum Chem. 2005, 48, 185. <https://doi.org/10.1016/S0065-3276(05)48013-2>
16c. Sauer S. P. A., Paidarová I.: Comp. Lett. 2007, 3, 399. <https://doi.org/10.1163/157404007782913372>
16d. Paidarová I., Sauer S. P. A.: Collect. Czech. Chem. Commun. 2008, 73, 1415. <https://doi.org/10.1135/cccc20081415>
17. Sauer S. P. A.: J. Phys. B: At. Mol. Opt. Phys. 1997, 30, 3773. <https://doi.org/10.1088/0953-4075/30/17/007>
18a. Monkhorst H. J.: Int. J. Quantum Chem. Symp. 1977, 11, 421.
18b. Mukherjee D., Mukherjee P. K.: Chem. Phys. 1979, 39, 325. <https://doi.org/10.1016/0301-0104(79)80153-6>
18c. Ghosh S., Mukherjee D., Bhattacharyya S. N.: Chem. Phys. Lett. 1982, 72, 161.
18d. Dalgaard E., Monkhorst H. J.: Phys. Rev. A 1983, 28, 1217. <https://doi.org/10.1103/PhysRevA.28.1217>
18e. Aiga F., Sasagane K., Itho R.: Int. J. Quantum Chem. 1994, 51, 87. <https://doi.org/10.1002/qua.560510204>
18f. Kobayashi R., Koch H., Jørgensen P.: Chem. Phys. Lett. 1994, 219, 30. <https://doi.org/10.1016/0009-2614(94)00051-4>
18g. Datta B., Sen P., Mukherjee D.: J. Phys. Chem. 1995, 99, 6441. <https://doi.org/10.1021/j100017a024>
19a. Svendsen E. N., Tanega J.: J. Raman. Spectrosc. 1978, 7, 268. <https://doi.org/10.1002/jrs.1250070508>
19b. Svendsen E. N., Oddershede J.: J. Chem. Phys. 1979, 71, 3000. <https://doi.org/10.1063/1.438704>
19c. Gough K. M., Murphy W. F., Stroyer-Hansen T., Svendsen E. N.: J. Chem. Phys. 1987, 87, 341.
19d. Gough K. M.: J. Chem. Phys. 1989, 91, 2424. <https://doi.org/10.1063/1.457001>
19e. Gough K. M., Dwyer J. R.: J. Phys. Chem. A 1998, 102, 2723. <https://doi.org/10.1021/jp980972h>
19f. Gough K. M., Dwyer J. R., Dawes R.: Can. J. Chem. 2000, 78, 1035. <https://doi.org/10.1139/cjc-78-7-1035>
19g. Neugebauer J., Reiher M., Hess B. A.: J. Chem. Phys. 2002, 117, 8623. <https://doi.org/10.1063/1.1506919>
19h. Quinet Q., Champagne B., Kirtman B.: Int. J. Quantum Chem. 2002, 89, 341. <https://doi.org/10.1002/qua.10270>
19i. Smirnov K. S., Bougeard D.: J. Raman. Spectrosc. 2006, 37, 100. <https://doi.org/10.1002/jrs.1406>
20. Angeli C., Bak K. L., Bakken V., Christiansen O., Cimiraglia R., Coriani S., Dahle P., Dalskov E., Enevoldsen T., Fernandez B., Hättig C., Hald K., Heiberg H., Helgaker T., Hettema H., Jensen H. J. Aa., Jonsson D., Jørgensen P., Kirpekar S., Klopper W., Kobayashi R., Koch H., Ligabue A., Lutnas O. B., Mikkelsen K. V., Norman P., Olsen J., Packer M. J., Pedersen T. B., Rinkevicius Z., Rudberg E., Ruden T. A., Ruud K., Salek P., Sanchez de Merás A., Saue T., Sauer S. P. A., Schimmelpfennig B., Sylvester-Hvid K. O., Tayler P. R., Vahtras O., Wilson D. J., Agren H.: Dalton, A Molecular Electronic Structure Program, Release 2.0. http://www.kjemi.uio.no/software/dalton/dalton.html, 2005.
21. Helgaker T., Ruud K., Bak K. L., Jørgensen P., Olsen J.: Faraday Discuss. 1994, 99, 165. <https://doi.org/10.1039/fd9949900165>
22a. Quinet Q., Champagne B.: J. Chem. Phys. 2001, 115, 6293. <https://doi.org/10.1063/1.1398310>
22b. Quinet Q., Champagne B., Kirtman B.: J. Comput. Chem. 2001, 22, 1920. <https://doi.org/10.1002/jcc.1142>
23a. Vidal L. N., Vazquez P. A. M.: Quim. Nova 2003, 26, 507. <https://doi.org/10.1590/S0100-40422003000400012>
23b. Vidal L. N., Vazquez P. A. M.: Int. J. Quantum Chem. 2005, 103, 632. <https://doi.org/10.1002/qua.20565>
24a. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
24b. Kendall R. A., Dunning T. H., Harrison R. J.: J. Chem. Phys. 1992, 96, 6796. <https://doi.org/10.1063/1.462569>
24c. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1993, 98, 1358. <https://doi.org/10.1063/1.464303>
24d. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975. <https://doi.org/10.1063/1.466439>
24e. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1995, 103, 4572. <https://doi.org/10.1063/1.470645>
24f. Wilson A. K., Woon D. E., Peterson K. A., Dunning T. H., Jr.: J. Chem. Phys. 1999, 110, 7667. <https://doi.org/10.1063/1.478678>
25a. Halls M. D., Schlegel H. B.: J. Chem. Phys. 1999, 111, 8819. <https://doi.org/10.1063/1.480228>
25b. van Caillie C., Amos R. D.: Phys. Chem. Chem. Phys. 2000, 2, 2123. <https://doi.org/10.1039/a909807k>
26a. Pecul M., Rizzo A.: J. Chem. Phys. 2002, 116, 1259. <https://doi.org/10.1063/1.1427717>
26b. Pecul M., Coriani S.: Chem. Phys. Lett. 2002, 355, 327. <https://doi.org/10.1016/S0009-2614(02)00270-1>
27. Perdew J. P., Zunger A.: Phys. Rev. B 1981, 23, 5048. <https://doi.org/10.1103/PhysRevB.23.5048>
28. Padial N. T., Norcross D. W.: Phys. Rev. A 1984, 29, 1742. <https://doi.org/10.1103/PhysRevA.29.1742>
29. Maroulis G.: Chem. Phys. Lett. 1994, 226, 420. <https://doi.org/10.1016/0009-2614(94)00719-5>
30. Maroulis G.: J. Chem. Phys. 1992, 97, 4188. <https://doi.org/10.1063/1.463921>
31. Hald K., Pawlowski F., Jørgensen P., Hättig C.: J. Chem. Phys. 2003, 118, 1292. <https://doi.org/10.1063/1.1523905>
32. Raballand W., Rotger M., Boudon V., Loëte M., Breidung J., Thiel W.: J. Mol. Struct. 2006, 780-781, 79. <https://doi.org/10.1016/j.molstruc.2005.04.051>
33. Thomas G. F., Meath W. J.: Mol. Phys. 1977, 34, 113. <https://doi.org/10.1080/00268977700101561>
34. Jhanwar B. L., Meath W. J., MacDonald J. C. F.: Can. J. Chem. 1983, 61, 1027.
35. Maroulis G.: J. Mol. Struct. (THEOCHEM) 2003, 633, 177. <https://doi.org/10.1016/S0166-1280(03)00273-2>
36. Sánchez M., Ferraro M. B., Alkorta I., Elguero J., Sauer S. P. A.: J. Chem. Phys. 2008, 128, 64318. <https://doi.org/10.1063/1.2826351>
37a. Enevoldsen T., Oddershede J., Sauer S. P. A.: Theor. Chem. Acc. 1998, 100, 275. <https://doi.org/10.1007/s002140050388>
37b. Kirpekar S., Sauer S. P. A.: Theor. Chem. Acc. 1999, 103, 146. <https://doi.org/10.1007/s002140050525>
37c. Sauer S. P. A., Raynes W. T.: J. Chem. Phys. 2000, 113, 3121. <https://doi.org/10.1063/1.1287277>
37d. Grayson M., Sauer S. P. A.: Mol. Phys. 2000, 98, 1981. <https://doi.org/10.1080/00268970009483401>
37e. Provasi P. F., Aucar G. A., Sauer S. P. A.: J. Chem. Phys. 2001, 115, 1324. <https://doi.org/10.1063/1.1379331>
37f. Krivdin L. B., Sauer S. P. A., Peralta J. E., Contreras R. H.: Magn. Reson. Chem. 2002, 40, 187. <https://doi.org/10.1002/mrc.989>
37g. Barone V., Provasi P. F., Peralta J. E., Snyder J. P., Sauer S. P. A., Contreras R. H.: J. Phys. Chem. A 2003, 107, 4748. <https://doi.org/10.1021/jp0300851>
37h. Sauer S. P. A., Krivdin L. B.: Magn. Reson. Chem. 2004, 42, 671. <https://doi.org/10.1002/mrc.1400>
37i. Provasi P. F., Sauer S. P. A.: J. Chem. Theory Comput. 2006, 2, 1019. <https://doi.org/10.1021/ct6000973>
38a. Wigglesworth R. D., Raynes W. T., Sauer S. P. A., Oddershede J.: Mol. Phys. 1997, 92, 77. <https://doi.org/10.1080/00268979709482075>
38b. Wigglesworth R. D., Raynes W. T., Sauer S. P. A., Oddershede J.: Mol. Phys. 1998, 94, 851. <https://doi.org/10.1080/00268979809482379>
38c. Sauer S. P. A., Møller C. K., Koch H., Paidarová I., Špirko V.: Chem. Phys. 1998, 238, 385. <https://doi.org/10.1016/S0301-0104(98)00329-2>
38d. Wigglesworth R. D., Raynes W. T., Kirpekar S., Oddershede J., Sauer S. P. A.: J. Chem. Phys. 2000, 112, 736. <https://doi.org/10.1063/1.480697>
38e. Wigglesworth R. D., Raynes W. T., Kirpekar S., Oddershede J., Sauer S. P. A.: J. Chem. Phys. 2000, 112, 3735. <https://doi.org/10.1063/1.480525>
38f. Sauer S. P. A., Raynes W. T., Nicholls R. A.: J. Chem. Phys. 2001, 115, 5994. <https://doi.org/10.1063/1.1398091>
39. O’Connell J., Lane N. F.: Phys. Rev. A 1983, 27, 1893. <https://doi.org/10.1103/PhysRevA.27.1893>
40. Allan M., Andric L.: J. Chem. Phys. 1996, 105 3559. <https://doi.org/10.1063/1.472819>