Collect. Czech. Chem. Commun. 2008, 73, 1495-1508
https://doi.org/10.1135/cccc20081495

BO3 Molecular Structures: Examples of the Importance of Electron Correlation

Alexander Yu. Sokolov, Nathan J. Stibrich and Henry F. Schaefer, III*

Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, U.S.A.

References

1. Inghram M. G., Porter R. F., Chupka W. A.: J. Chem. Phys. 1956, 25, 498. <https://doi.org/10.1063/1.1742952>
2. Weltner W., Warn J. R.: J. Chem. Phys. 1962, 37, 292. <https://doi.org/10.1063/1.1701319>
3. Sommer A., White D., Linnevsky M. J., Mann D. E.: J. Chem. Phys. 1963, 38, 87. <https://doi.org/10.1063/1.1733501>
4. Ruscic B. M., Curtiss L. A., Berkowitz J.: J. Chem. Phys. 1984, 80, 3962. <https://doi.org/10.1063/1.447278>
5. Dows D. A., Porter R. F.: J. Am. Chem. Soc. 1956, 78, 5156. <https://doi.org/10.1021/ja01601a008>
6. White D., Walsh P., Mann D. E.: J. Chem. Phys. 1958, 28, 508. <https://doi.org/10.1063/1.1744169>
7. Hanner A. W., Gole J. L.: J. Chem. Phys. 1980, 73, 5025. <https://doi.org/10.1063/1.439979>
8. Johns J. W. C.: Can. J. Phys. 1961, 39, 1738. <https://doi.org/10.1139/p61-199>
9. Ruatta S. A., Hintz P. A., Anderson S. L.: J. Chem. Phys. 1991, 94, 2833. <https://doi.org/10.1063/1.459806>
10. Burkholder T. R., Andrews L.: J. Phys. Chem. 1992, 96, 10195. <https://doi.org/10.1021/j100204a020>
11. Burkholder T. R., Andrews L.: Chem. Phys. Lett. 1992, 199, 455. <https://doi.org/10.1016/0009-2614(92)87026-L>
12. Burkholder T. R., Andrews L., Bartlett R. J.: J. Phys. Chem. 1993, 97, 3500. <https://doi.org/10.1021/j100116a010>
13. Zhou M., Jiang L., Xu Q.: Chem. Eur. J. 2007, 10, 5817. <https://doi.org/10.1002/chem.200400474>
14. Dewar M. J. S., Jie C., Zoebisch E. G.: Organometallics 1988, 7, 513. <https://doi.org/10.1021/om00092a043>
15. Page M.: J. Phys. Chem. 1989, 93, 3639. <https://doi.org/10.1021/j100346a051>
16. Martin J. M. L., Fran├žois J. P., Gijbels R.: Chem Phys. Lett. 1992, 193, 243. <https://doi.org/10.1016/0009-2614(92)85662-T>
17. Nemukhin A. V., Weinhold F.: J. Chem. Phys. 1993, 98, 1329. <https://doi.org/10.1063/1.464299>
18. Drummond M. L., Meunier V., Sumpter B. G.: J. Phys. Chem. A 2007, 111, 6539. <https://doi.org/10.1021/jp0726182>
19. Zhai H.-J., Li S.-D., Wang L.-S.: J. Am. Chem. Soc. 2007, 129, 9254. <https://doi.org/10.1021/ja072611y>
20. Li S.-D., Zhai H.-J., Wang L.-S.: J. Am. Chem. Soc. 2008, 130, 2573. <https://doi.org/10.1021/ja0771080>
21. Llewellyn I. P., Fontijn A., Clyne M. A. A.: Chem. Phys. Lett. 1981, 84, 504. <https://doi.org/10.1016/0009-2614(81)80395-8>
22. Yetter R. A., Rabitz H., Dryer F. L., Brown R. C., Kolb C. E.: Combust. Flame 1991, 83, 43. <https://doi.org/10.1016/0010-2180(91)90202-M>
23. Oldenborg R. C., Baughcum S. L.: Advances in Laser Science I; AIP Conference Proceedings 146 (W. C. Stwalley and M. Lapp, Eds), p. 562. AIP, New York 1986.
24. Stanton C. T., Garland N. L., Nelson H. H.: J. Phys. Chem. 1991, 95, 8741. <https://doi.org/10.1021/j100175a059>
25. Dunning T. H.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
26. Kendall R. A., Dunning T. H., Harrison R. J.: J. Chem. Phys. 1992, 96, 6796. <https://doi.org/10.1063/1.462569>
27. Woon D. E., Dunning T. H.: J. Chem. Phys. 1993, 98, 1358. <https://doi.org/10.1063/1.464303>
28. Werner H.-J., Knowles P. J., Lindh R., Manby F. R., Schutz M., and others: MOLPRO, version 2006.1, a package of ab initio programs, see http://www.molpro.net.
29. Burkholder T. R., Andrews L. J.: J. Chem. Phys. 1991, 95, 8697. <https://doi.org/10.1063/1.461814>