Collect. Czech. Chem. Commun. 2008, 73, 1457-1474
https://doi.org/10.1135/cccc20081457

Interaction of Gold Atom with Clusters of Water: Few Computational Mise-En-Scènes with Hydrogen Bonding Motif

Eugene S. Kryachko

Bogolyubov Institute for Theoretical Physics, Kiev-143, 03680 Ukraine and Department of Chemistry, Bat. B6c, University of Liege, Sart-Tilman, B-4000 Liege 1, Belgium

References

1. Kuhn T. S.: The Structure of Scientific Revolutions, p. 168. University of Chicago, Chicago 1962.
2a. See e.g. for current literature: Pyykkö P.: Angew. Chem. Int. Ed. 2004, 43, 4412. <https://doi.org/10.1002/anie.200300624>
2b. Pyykkö P.: Inorg. Chim. Acta 2005, 358, 4113. <https://doi.org/10.1016/j.ica.2005.06.028>
2c. Pyykkö P.: Chem. Soc. Rev. 2008, in press.
2d. Yang P. (Ed.): The Chemistry of Nanostructured Materials. World Scientific, Singapore 2003.
2e. Kaplan I. G.: Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials. Wiley, Chichester 2006.
2f. Kryachko E. S.: Int. J. Quantum Chem. 2008, 108, 198; and references therein. <https://doi.org/10.1002/qua.21417>
3. Hobza P., Zahradník R.: Weak Intermolecular Interactions in Chemistry and Biology. Studies in Physical and Theoretical Chemistry, Vol. 3. Elsevier, Amsterdam 1980.
4. Hobza P., Zahradník R.: Intermolecular Complexes. Elsevier, Amsterdam 1988.
5a. Hobza P., Zahradnik R.: Int. J. Quantum Chem. 1992, 42, 581. <https://doi.org/10.1002/qua.560420407>
5b. Zahradnik R.: Acc. Chem. Res. 1995, 28, 306. <https://doi.org/10.1021/ar00055a004>
5c. Müller-Dethlefs K., Hobza P.: Chem. Rev. 2000, 100, 143. <https://doi.org/10.1021/cr9900331>
5d. Hobza P., Zahradnik R., Müller-Dethlefs K.: Collect. Czech. Chem. Commun. 2006, 71, 443. <https://doi.org/10.1135/cccc20060443>
6. Hadži D., Thompson H. W. (Eds): Hydrogen Bonding. Pergamon Press, London 1959.
7. Pimentel C. G., McClellan A. L.: The Hydrogen Bond. Freeman, San Francisco 1960.
8. Hamilton W. C., Ibers J. A.: Hydrogen Bonding in Solids. Benjamin, New York 1968.
9. Vinogradov S. N., Linell R. H.: Hydrogen Bonding. Van Nostrand–Reinhold, New York 1971.
10. Joesten M. D., Schaad L. J.: Hydrogen Bonding. Dekker, New York 1974.
11. Schuster P., Zundel G., Sandorfy C. (Eds): The Hydrogen Bond. Recent Developments in Theory and Experiments. North-Holland, Amsterdam 1976.
12. Schuster P. in: Intermolecular Interactions: From Diatomics to Biopolymers (B. Pullman, Ed.), p. 363. Wiley, Chichester 1978.
13. Schuster P. (Guest Ed.): Top. Curr. Chem. 1984, 120.
14. Jeffrey G. A., Saenger W.: Hydrogen Bonding in Biological Structures. Springer, Berlin 1991.
15. Jeffrey G. A.: An Introduction to Hydrogen Bonding. Oxford University Press, Oxford 1997.
16. Scheiner S.: Hydrogen Bonding. A Theoretical Perspective. Oxford University Press, Oxford 1997.
17. Hadži D. (Ed.): Theoretical Treatment of Hydrogen Bonding. Wiley, New York 1997.
18. Steiner T., Desiraju G. R.: Chem. Commun. 1998, 891. <https://doi.org/10.1039/a708099i>
19. Desiraju G. R., Steiner T.: The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press, Oxford 1999.
20. Steiner T.: Angew. Chem. Int. Ed. 2002, 41, 48. <https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U>
21. Karpfen A.: Adv. Chem. Phys. 2002, 123, 469. <https://doi.org/10.1002/0471231509.ch8>
22. Grabowski S. (Ed.): Hydrogen Bonding – New Insights, Vol. 3 of Challenges and Advances in Computational Chemistry and Physics (J. Leszczynski, Ed.). Springer, Dordrecht 2006.
23. For the recent IUPAC categorization of the hydrogen bond see http://www.iupac.org/projects/2004/2004-026-2-100.html.
24a. Bondi A.: J. Phys. Chem. 1964, 68, 441. <https://doi.org/10.1021/j100785a001>
24b. Rowland R. S., Taylor T.: J. Phys. Chem. 1996, 100, 7384. <https://doi.org/10.1021/jp953141+>
25. Olovsson I.: Z. Phys. Chem. 2006, 220, 963. <https://doi.org/10.1524/zpch.2006.220.7.963>
26a. Crabtree R. H., Siegbahn P. E. M., Wisenstein O., Rheingold A. L., Koetzle T. F.: Acc. Chem. Res. 1996, 29, 348. <https://doi.org/10.1021/ar950150s>
26b. Brammer L., Zhao D., Ladipo F. T., Braddock-Wilking J.: Acta Crystallogr., Sect. B: Struct. Sci. 1995, 51, 632. <https://doi.org/10.1107/S0108768195003673>
26c. Brammer L.: Dalton Trans. 2003, 3145. <https://doi.org/10.1039/b303006g>
26d. Brammer L., McCann M. C., Bullock R. M., McMullan R. K., Sherwood P.: Organometallics 1992, 11, 2339. <https://doi.org/10.1021/om00043a009>
26e. Brammer L., Charnock J. M., Goggin P. L., Goodfellow R. J., Koetzle T. F., Orpen A. G.: J. Chem. Soc., Dalton Trans. 1991, 1789. <https://doi.org/10.1039/dt9910001789>
27a. Braga D., Grepioni F., Tedesco E., Biradha K., Desiraju G. R.: Organometallics 1997, 16, 1846. <https://doi.org/10.1021/om9608364>
27b. Orlova G., Scheiner S.: Organometallics 1998, 17, 4362. <https://doi.org/10.1021/om9804881>
27c. Martin A.: J. Chem. Educ. 1999, 76, 578. <https://doi.org/10.1021/ed076p578>
27d. Epstein L. M., Shubina E. S.: Coord. Chem. Rev. 2002, 231, 165. <https://doi.org/10.1016/S0010-8545(02)00118-2>
27e. Jacobsen, H.: Chem. Phys. 2008, 345, 95. <https://doi.org/10.1016/j.chemphys.2008.01.041>
28a. Haruta M., Kobayashi T., Sano H., Yamada N.: Chem. Lett. 1987, 405. <https://doi.org/10.1246/cl.1987.405>
28b. Haruta M., Yamada N., Kobayashi T., Iijima S.: J. Catal. 1989, 115, 301. <https://doi.org/10.1016/0021-9517(89)90034-1>
29. Kryachko E. S., Remacle F.: Chem. Phys. Lett. 2005, 404, 142. <https://doi.org/10.1016/j.cplett.2005.01.061>
30a. Kryachko E. S., Remacle F. in: Recent Advances in the Theory of Chemical and Physical Systems (J.-P. Julien, J. Maruani, D. Mayou, S. Wilson and G. Delgado-Barrio, Eds), Vol. 15, p. 433. Springer, Dordrecht 2006.
30b. Kryachko E. S., Remacle F.: Nano Lett. 2005, 5, 735. <https://doi.org/10.1021/nl050194m>
30c. Kryachko E. S., Remacle F.: J. Phys. Chem. B 2005, 109, 22746. <https://doi.org/10.1021/jp054708h>
30d. Kryachko E. S., Karpfen A., Remacle F.: J. Phys. Chem. A 2005, 109, 7309. <https://doi.org/10.1021/jp052460q>
30e. Kryachko E. S., Remacle F. in: Theoretical Aspects of Chemical Reactivity (A. Torro-Labbe, Ed.), Vol. 16 of Theoretical and Computational Chemistry (P. Politzer, Ed.), p. 219. Elsevier, Amsterdam 2006.
30f. Kryachko E. S., Remacle F. in: Topics in the Theory of Chemical and Physical Systems (S. Lahmar, J. Maruani, S. Wilson and G. Delgado-Barrio, Eds), Vol. 16 of Progress in Theoretical Chemistry and Physics, p. 161. Springer, Dordrecht 2007.
30g. Kryachko E. S., Remacle F.: J. Chem. Phys. 2007, 127, 194305. <https://doi.org/10.1063/1.2786996>
30h. Kryachko E. S., Remacle F.: Mol. Phys. 2008, 106, 521. <https://doi.org/10.1080/00268970701881170>
30i. Kryachko E. S.: J. Mol. Struct. 2008, 880, 23. <https://doi.org/10.1016/j.molstruc.2007.12.036>
31. Li J., Li X., Zhai H.-J, Wang L.-S: Science 2003, 299, 864. <https://doi.org/10.1126/science.1079879>
32. Kryachko E. S., Remacle F.: Int. J. Quantum Chem. 2007, 107, 2922. <https://doi.org/10.1002/qua.21504>
33. Schneider H., Boese A. D., Weber J. M.: J. Chem. Phys. 2005, 123, 084307. <https://doi.org/10.1063/1.2006092>
34. Zheng W., Li X., Eustis S., Grubisic A., Thomas O., de Clercq H., Bowen K.: Chem. Phys. Lett. 2007, 444, 232. <https://doi.org/10.1016/j.cplett.2007.07.036>
35a. Wu D.-Y., Duan S., Liu X.-M., Xu Y.-C., Jiang Y.-X., Ren B., Xu X., Lin S. H., Tian Z.-Q.: J. Phys. Chem. A 2008, 112, 1313. <https://doi.org/10.1021/jp0722105>
35b. see also Chen Y. X., Zou S. Z., Huang K. Q., Tian Z. Q.: J. Raman Spectrosc. 1998, 29, 749. <https://doi.org/10.1002/(SICI)1097-4555(199808)29:8<749::AID-JRS285>3.0.CO;2-2>
36a. Nuss H., Jansen M.: Angew. Chem. Int. Ed. 2006, 45, 4369. <https://doi.org/10.1002/anie.200601093>
36b. Nuss H., Jansen M.: Z. Naturforsch., B: Chem. Sci. 2006, 61, 1205. <https://doi.org/10.1515/znb-2006-1003>
36c. Dietzel P. D. C., Jansen M.: Chem. Commun. 2001, 2208. <https://doi.org/10.1039/b105648b>
37. It is worth mentioning that in the [(NMe4)Au] compound synthesized in36c, the hydrogen atoms of the methyl groups and the auride anion are separated by 2.921(0) Å, with rmin(C···Au) = 3.663(1) Å. Such contact separation obeys the van der Waals cutoff condition (iv). However, as the authors of36c pointed out, “whether this contact is a true hydrogen bond or not has not yet been proven”, since a short separation N+–C–H···Y can be originated from the attractive N+···Y Coulomb interaction where, in addition, the H···Y contact prevents a further approach of Y simply due to steric effects19.
38a. Shafai G. S., Shetty S., Krishnamurty S., Kanhere D. G.: J. Chem. Phys. 2007, 126, 014704. <https://doi.org/10.1063/1.2424458>
38b. Pakiari A. H., Jamshidi Z.: J. Phys. Chem. A 2007, 111, 4391. <https://doi.org/10.1021/jp070306t>
38c. Aqil A., Qiu H., Greisch J.-F., Jérôme R., De Pauw E., Jérôme C.: Polymer 2008, 49, 1145. <https://doi.org/10.1016/j.polymer.2007.12.033>
38d. A bit of pedantry: the reference “Remacle et al.” on p. 1151 of38c to the works25,29b,29c is grammatically inconsistent since: 1) “et al.” (precisely “et alii” or “et alia”) means “and others” (the plural number) and is used for a list of names of more than two authors (e.g., the American Psychological Association style), more than three authors (e.g., the Modern Language Association of America style), or four and more authors (e.g., the American Physical Society style), or even 16 and more authors (according to the American Chemical Society style), and 2) the order of the authors of the cited works25,29b,29c is actually opposite.
39. See also Vázquez M.-V., Martínez A.: J. Phys. Chem. A 2008, 112, 1033. <https://doi.org/10.1021/jp709813f>
40. Shi P., Jiang Q., Lin J., Zhao Y., Lin L., Guo Z.: J. Inorg. Biochem. 2006, 100, 939. <https://doi.org/10.1016/j.jinorgbio.2005.12.020>
41. It is interesting to notice in this regard that – as recently shown by Ončák M., Cao Y., Beyer M. K., Zahradník R., Schwarz H.: Chem. Phys. Lett. 2008, 450, 268 – the anionic dimer Pt2 does not form any hydrogen bond with NH3. <https://doi.org/10.1016/j.cplett.2007.11.059>
42a. The experimental value of EAexpt(Au) = 2.30 ± 0.10 eV according to: Ganteför G., Krauss S., Eberhardt W.: J. Electron Spectrosc. Relat. Phenom. 1998, 88, 35; <https://doi.org/10.1016/S0368-2048(97)00264-8>
42b. 2.308664 ± 0.000044 eV according to: Jotop H., Lineberger W. C.: J. Phys. Chem. Ref. Data 1985, 14, 731;
42c. and 2.927 ± 0.050 eV according to: Taylor K. J., Pettiettehall C. L., Cheshnovsky O., Smalley R. E.: J. Chem. Phys. 1992, 96, 3319. <https://doi.org/10.1063/1.461927>
42d. EAtheor(Au) = 2.33 eV: Buckart S., Ganteför G., Kim Y. D., Jena P.: J. Am. Chem. Soc. 2003, 125, 14205. <https://doi.org/10.1021/ja036544t>
42e. EAtheor(Au) = 2.166 eV: Joshi A. M., Delgass W. N., Thomson K. T.: J. Phys. Chem. B 2005, 109, 22392. <https://doi.org/10.1021/jp052653d>
42f. with the used basis set, MP2 yields 1.536 eV.
42g. EAtheor(Au) = 1.86 eV was calculated at the MCPF computational level in: Bauschlicher C. W., Jr., Langhoff S. R., Partridge H. J.: J. Chem. Phys. 1990, 93, 8133. <https://doi.org/10.1063/1.459343>
42h. the PW91PW91 DFT level in conjunction with the basis set used in the present work yields 2.25 eV and 2.31 eV with the LANL2DZ basis set, as reported in: Walker A. V.: J. Chem. Phys. 2005, 122, 094310. <https://doi.org/10.1063/1.1857478>
43. Comparing with the ground-state water dimer, this stretching mode ν(O–H) is red- shifted by only 21 cm–1.
44. Antušek A., Urban M., Sadlej A. J.: J. Chem. Phys. 2003, 119, 7247. <https://doi.org/10.1063/1.1605936>
45a. Wolf S., Sommerer G., Rutz S., Schreiber E., Leisner T., Wöste L., Berry R. S.: Phys. Rev. Lett. 1995, 74, 4177. <https://doi.org/10.1103/PhysRevLett.74.4177>
45b. Socaciu-Siebert L. D., Hagen J., Le Roux J., Popolan D., Vaida M., Vajda S., Bernhardt T. M., Wöste L.: Phys. Chem. Chem. Phys. 2005, 7, 2706. <https://doi.org/10.1039/b506034f>
45c. Mitrić R., Hartmann M., Stanca B., Bonačić-Koutecký V., Fantucci P.: J. Phys. Chem. A 2001, 105, 8892. <https://doi.org/10.1021/jp011759f>
45d. Bernhardt T. M., Hagen J., Socaciu-Siebert L. D., Mitrić R., Heidenreich A., Le Roux J., Popolan D., Vaida M., Wöste L., Bonačić-Koutecký V., Jortner J.: ChemPhysChem 2005, 6, 243. <https://doi.org/10.1002/cphc.200400454>
46. Ishiuchi S.-I., Sakai M., Tsuchida Y., Takeda A., Kawashima Y., Fujii M., Dopfer O., Müller-Dethlefs K.: Angew. Chem. Int. Ed. 2005, 44, 6149. <https://doi.org/10.1002/anie.200501430>
47. See e.g. Margulies D., Melman G., Shanzer A.: J. Am. Chem. Soc. 2006, 128, 4865. <https://doi.org/10.1021/ja058564w>
48a. Hrušák J., Scröder D., Schwarz H.: Chem. Phys. Lett. 1994, 225, 416. <https://doi.org/10.1016/0009-2614(94)87104-3>
48b. Hertwig H., Hrušák J., Scröder D., Koch W., Schwarz H.: Chem. Phys. Lett. 1995, 236, 194. <https://doi.org/10.1016/0009-2614(95)00211-L>
48c. Feller D., Glendening E. D., de Jong W. A.: J. Chem. Phys. 1999, 110, 1475. <https://doi.org/10.1063/1.477814>
48d. Lee H. M., Min S. K., Lee E. C., Min J.-H., Odde S., Kim K. S.: J. Chem. Phys. 2005, 122, 064314. <https://doi.org/10.1063/1.1849134>
48e. Lee H. M., Diefenbach M., Suh S. B., Tarakeshwar P., Kim K. S.: J. Chem. Phys. 2005, 123, 074328. <https://doi.org/10.1063/1.2000256>
48f. Poisson L., Lepetit F., Mestdagh J.-M., Visticot J.-P.: J. Phys. Chem. A 2002, 106, 5455. <https://doi.org/10.1021/jp025557a>
48g. Karttunen A. J., Pakkanen T. A.: J. Phys. Chem. B 2006, 110, 25926. <https://doi.org/10.1021/jp066205x>
49a. Burda J. V., Šponer J., Hobza P.: J. Phys. Chem. 1996, 100, 7250. <https://doi.org/10.1021/jp952941h>
49b. Šponer J., Sabat M., Burda J. V., Leszczynski J., Hobza P., Lippert B.: J. Biol. Inorg. Chem. 1999, 4, 537. <https://doi.org/10.1007/s007750050376>
50. Reveles J. U., Calaminici P., Beltrán M. R., Köster A. M., Khanna S. N.: J. Am. Chem. Soc. 2007, 129, 15565. <https://doi.org/10.1021/ja074336l>
51. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallington (CT) 2004.
52. Ross R. B., Powers J. M., Atashroo T., Ermler W. C., LaJohn L. A., Christiansen P. A.: J. Chem. Phys. 1990, 93, 6654. <https://doi.org/10.1063/1.458934>
53. McQuarrie D. A.: Statistical Mechanics. Harper and Row, New York 1976.
54. See e.g. Kim K. S., Dupuis M., Lie G. C., Clementi E.: Chem. Phys. Lett. 1986, 131, 451. <https://doi.org/10.1016/0009-2614(86)80564-4>