Collect. Czech. Chem. Commun. 2008, 73, 1415-1436
https://doi.org/10.1135/cccc20081415

A Comparison of Møller-Plesset and Coupled Cluster Linear Response Theory Methods for the Calculation of Dipole Oscillator Strength Sum Rules and C6 Dispersion Coefficients

Ivana Paidarováa,* and Stephan P. A. Sauerb

a J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
b Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

References

1. London F.: Z. Phys. Chem. B 1930, 11, 222.
2. Casimir H. B. G., Polder D.: Phys. Rev. 1948, 73, 360. <https://doi.org/10.1103/PhysRev.73.360>
3a. Karplus M., Kolker H. J.: J. Chem. Phys. 1964, 41, 3955. <https://doi.org/10.1063/1.1725842>
3b. Dalgarno A.: Adv. Chem. Phys. 1967, 12, 143. <https://doi.org/10.1002/9780470143582.ch3>
3c. Margenau H.: Rev. Mod. Phys. 1939, 11, 1. <https://doi.org/10.1103/RevModPhys.11.1>
3d. London F.: J. Phys. Chem. 1942, 46, 305. <https://doi.org/10.1021/j150416a009>
4. Langhoff P. W., Gordon R. G., Karplus M.: J. Chem. Phys. 1971, 55, 2126. <https://doi.org/10.1063/1.1676384>
5. Maitland G. C., Ribgy M., Smith E. B., Wakeham W. A.: Intermolecular Forces. Clarendon Press, Oxford 1981.
6. Kihara T.: Intermolecular Forces. Wiley, New York 1978.
7. Allen M. P., Tildesley D. J.: Computer Simulation of Liquids. Clarendon Press, Oxford 1987.
8a. Linderberg J., Öhrn Y.: Propagators in Quantum Chemistry. Academic Press, London 1973.
8b. Oddershede J.: Adv. Quantum Chem. 1978, 2, 275. <https://doi.org/10.1016/S0065-3276(08)60240-3>
8c. Jørgensen P., Simons J.: Second Quantization-Based Methods in Quantum Chemistry. Academic Press, New York 1981.
8d. Oddershede J. in: Methods in Computational Molecular Physics (G. H. F. Diercksen and S. Wilson, Eds), pp. 249–271. D. Reidel Publ. Co., Dordrecht 1983.
8e. Oddershede J.: Adv. Chem. Phys. 1987, 69, 201. <https://doi.org/10.1002/9780470142943.ch3>
8f. Oddershede J. in: Methods in Computational Molecular Physics (S. Wilson and G. H. F. Diercksen, Eds), pp. 303–324. Plenum Press, New York 1992.
9. Oddershede J., Jørgensen P., Yeager D. L.: Comput. Phys. Rep. 1984, 2, 33. <https://doi.org/10.1016/0167-7977(84)90003-0>
10. Sauer S. P. A., Packer M. J. in: Computational Molecular Spectroscopy (P. R. Bunker and P. Jensen, Eds), Chap. 7, pp. 221–252. John Wiley and Sons, London 2000.
11. Olsen J., Jørgensen P.: J. Chem. Phys. 1985, 82, 3235. <https://doi.org/10.1063/1.448223>
12a. Koch H., Jørgensen P.: J. Chem. Phys. 1990, 93, 3333. <https://doi.org/10.1063/1.458814>
12b. Christiansen O., Jørgensen P., Hättig C.: Int. J. Quantum Chem. 1998, 68, 1. <https://doi.org/10.1002/(SICI)1097-461X(1998)68:1<1::AID-QUA1>3.0.CO;2-Z>
13. Norman P., Bishop D. M., Jensen H. J. Aa., Oddershede J.: J. Chem. Phys. 2001, 115, 10323. <https://doi.org/10.1063/1.1415081>
14. Norman P., Jiemchooroj A., Sernelius B. E.: J. Chem. Phys. 2003, 118, 9167. <https://doi.org/10.1063/1.1568082>
15. Visser F., Wormer P. E. S., Stam P.: J. Chem. Phys. 1983, 79, 4973. <https://doi.org/10.1063/1.445591>
16. Visser F., Wormer P. E. S.: Mol. Phys. 1984, 52, 923. <https://doi.org/10.1080/00268978400101661>
17. Fowler P. W., Jørgensen P., Olsen J.: J. Chem. Phys. 1990, 93, 7256. <https://doi.org/10.1063/1.459448>
18a. Jørgensen P., Jensen H. J. Aa., Olsen J.: J. Chem. Phys. 1988, 89, 3654. <https://doi.org/10.1063/1.454885>
18b. Olsen J., Jensen H. J. Aa., Jørgensen P.: J. Comput. Phys. 1988, 74, 265. <https://doi.org/10.1016/0021-9991(88)90081-2>
19. Hirschfelder J. O., Byers Brown W., Epstein S. T.: Adv. Quantum Chem. 1964, 1, 255. <https://doi.org/10.1016/S0065-3276(08)60381-0>
20. Parkinson W. A., Sauer S. P. A., Oddershede J., Bishop D. M.: J. Chem. Phys. 1993, 98, 487. <https://doi.org/10.1063/1.464643>
21a. Sauer S. P. A., Sabin J. R., Oddershede J.: Phys. Rev. A 1993, 47, 1123. <https://doi.org/10.1103/PhysRevA.47.1123>
21b. Sauer S. P. A., Sabin J. R., Oddershede J.: Nucl. Instrum. Methods Phys. Res., Sect. B 1995, 100, 458. <https://doi.org/10.1016/0168-583X(95)00370-3>
22. Cabrera-Trujillo R., Sabin J. R., Oddershede J., Sauer S. P. A.: Adv. Quantum Chem. 1999, 35, 175. <https://doi.org/10.1016/S0065-3276(08)60460-8>
23. Sauer S. P. A., Oddershede J., Sabin J. R.: J. Phys. Chem. A 2006, 110, 8811. <https://doi.org/10.1021/jp061412i>
24. Hettema H., Wormer P. E. S.: J. Chem. Phys. 1990, 93, 3389. <https://doi.org/10.1063/1.458818>
25. Diercksen G. H. F., Oddershede J., Paidarová I., Sabin J. R.: Int. J. Quantum Chem. 1991, 39, 755. <https://doi.org/10.1002/qua.560390602>
26a. Sauer S. P. A., Diercksen G. H. F., Oddershede J.: Int. J. Quantum Chem. 1991, 39, 667. <https://doi.org/10.1002/qua.560390504>
26b. Packer M. J., Sauer S. P. A., Oddershede J.: J. Chem. Phys. 1994, 100, 8969. <https://doi.org/10.1063/1.466701>
26c. Packer M. J., Dalskov E. K., Sauer S. P. A., Oddershede J.: Theor. Chim. Acta 1994, 89, 323. <https://doi.org/10.1007/BF01114105>
27. Dalskov E. K., Sauer S. P. A.: J. Phys. Chem. A 1998, 102, 5269. <https://doi.org/10.1021/jp980436p>
28. Hättig C., Hess B. A.: J. Chem. Phys. 1996, 105, 9948. <https://doi.org/10.1063/1.472827>
29a. Kundu B., Mukherjee D.: Chem. Phys. Lett. 1991, 179, 468. <https://doi.org/10.1016/0009-2614(91)87088-S>
29b. Stanton J. F.: Phys. Rev. A 1994, 49, 1698. <https://doi.org/10.1103/PhysRevA.49.1698>
29c. Jaszuński M., Rizzo A., Jørgensen P.: Theor. Chem. Acc. 2001, 106, 251.
29d. Pawlowski F., Jørgensen P., Hättig C.: Adv. Quantum Chem. 2005, 48, 9. <https://doi.org/10.1016/S0065-3276(05)48002-8>
30. Hättig C., Christiansen O., Jørgensen P.: J. Chem. Phys. 1997, 107, 10592. <https://doi.org/10.1063/1.474223>
31. Korona T., Przybytek M., Jeziorski B.: Mol. Phys. 2006, 104, 1303. <https://doi.org/10.1080/00268970600673975>
32. Wheatley R. J.: J. Comput. Chem. 2008, 29, 445. <https://doi.org/10.1002/jcc.20801>
33. Sauer S. P. A., Paidarová I.: Computing Lett. 2007, 3, 399. <https://doi.org/10.1163/157404007782913372>
34a. Chałasiński G., M. M. Szczęsniak: Chem. Rev. 2000, 100, 4227. <https://doi.org/10.1021/cr990048z>
34b. Jeziorska M., Jankowski P., Szalewics K., Jeziorski B.: J. Chem. Phys. 2000, 113, 2957. <https://doi.org/10.1063/1.1287058>
35a. Visser F., Wormer P. E. S., Stam P.: J. Chem. Phys. 1984, 81, 3755. <https://doi.org/10.1063/1.448203>
35b. Visser F., Wormer P. E. S., Jacobs W. P. J. H.: J. Chem. Phys. 1985, 82, 3753. <https://doi.org/10.1063/1.448912>
35c. Rijks W., Wormer P. E. S.: J. Chem. Phys. 1989, 90, 6507. <https://doi.org/10.1063/1.456317>
35d. Wormer P. E. S., Hettema H.: J. Chem. Phys. 1992, 97, 5592. <https://doi.org/10.1063/1.463767>
36. Rijks W., Wormer P. E. S.: J. Chem. Phys. 1988, 88, 5704. <https://doi.org/10.1063/1.454530>
37. Hettema H., Wormer P. E. S., Jørgensen P., Jensen H. J. Aa., Helgaker T.: J. Chem. Phys. 1994, 100, 1297. <https://doi.org/10.1063/1.467256>
38. Wormer P. E. S.: PhD Thesis. Katholieke Universiteit Nijmegen, Nijmegen (The Netherlands) 1975.
39. The frequency ω is here restricted to be real.
40a. Victor G. A., Dalgarno A.: J. Chem. Phys. 1969, 50, 2535. <https://doi.org/10.1063/1.1671412>
40b. Coulon Ph., Luyckx R., Lekkerkerker H. N. W.: J. Chem. Phys. 1979, 71, 3462. <https://doi.org/10.1063/1.438735>
40c. Thakkar A. J., Hettema H., Wormer P. E. S.: J. Chem. Phys. 1992, 97, 3252. <https://doi.org/10.1063/1.463012>
40d. Spelsberg D., Lorenz T., Meyer W.: J. Chem. Phys. 1993, 99, 7845. <https://doi.org/10.1063/1.465663>
40e. Wormer P. E. S., Hettema H., Thakkar A. J.: J. Chem. Phys. 1993, 98, 7140. <https://doi.org/10.1063/1.464757>
40f. Hettema H., Wormer P. E. S., Thakkar A. J.: Mol. Phys. 1993, 80, 533. <https://doi.org/10.1080/00268979300102451>
40g. Hohm U.: Chem. Phys. 1994, 179, 533. <https://doi.org/10.1016/0301-0104(94)87028-4>
40h. Magnasco V., Ottonelli M.: J. Mol. Struct. (THEOCHEM) 1999, 469, 31. <https://doi.org/10.1016/S0166-1280(98)00563-6>
41. Meyer W.: Chem. Phys. 1976, 17, 27. <https://doi.org/10.1016/0301-0104(76)85004-5>
42. Amos R. D., Handy N. C., Knowles P. J., Rice J. E., Stone A. J.: J. Phys. Chem. 1985, 89, 2186. <https://doi.org/10.1021/j100257a010>
43. Nielsen E. S., Jørgensen P., Oddershede J.: J. Chem. Phys. 1980, 73, 6238. <https://doi.org/10.1063/1.440119>
44a. Bak K. L., Koch H., Oddershede J., Christiansen O., Sauer S. P. A.: J. Chem. Phys. 2000, 112, 4173. <https://doi.org/10.1063/1.480963>
44b. Olsen J., Jørgensen P., Helgaker T., Oddershede J.: J. Phys. Chem. A 2005, 109, 11618. <https://doi.org/10.1021/jp054207w>
45a. Langhoff P. W., Karplus M. in: The Padé Approximant in Theoretical Physics (G. A. Baker, Jr. and J. L. Gammel, Eds), Chap. 2, pp. 41–97. Academic Press, New York 1970.
45b. Langhoff P. W., Karplus M.: J. Chem. Phys. 1970, 52, 1435. <https://doi.org/10.1063/1.1673148>
46. Langhoff P. W., Karplus M.: J. Chem. Phys. 1970, 53, 233. <https://doi.org/10.1063/1.1673771>
47. McLachlan A. D., Ball M. A.: Rev. Mod. Phys. 1964, 36, 844. <https://doi.org/10.1103/RevModPhys.36.844>
48. Rowe D. J.: Rev. Mod. Phys. 1968, 40, 153. <https://doi.org/10.1103/RevModPhys.40.153>
49. Langhoff P. W., Epstein S. T., Karplus M.: Rev. Mod. Phys. 1972, 44, 602. <https://doi.org/10.1103/RevModPhys.44.602>
50. Dirac P. A. M.: Proc. Camb. Phil. Soc. 1930, 26, 376. <https://doi.org/10.1017/S0305004100016108>
51a. Møller C., Plesset M. S.: Phys. Rev. 1934, 46, 618. <https://doi.org/10.1103/PhysRev.46.618>
51b. Pople J. A., Binkley J. S., Seeger R.: Int. J. Quantum Chem., Quantum Chem. Symp. 1976, 10, 1. <https://doi.org/10.1002/qua.560100802>
52a. Oddershede J., Jørgensen P.: J. Chem. Phys. 1977, 66, 1541. <https://doi.org/10.1063/1.434118>
52b. Oddershede J., Jørgensen P., Beebe N. H. F.: Int. J. Quantum Chem. 1977, 12, 655. <https://doi.org/10.1002/qua.560120406>
52c. Oddershede J., Jørgensen P., Beebe N. H. F.: J. Phys. B: At. Mol. Opt. Phys. 1978, 11, 1. <https://doi.org/10.1088/0022-3700/11/1/007>
53. Fagerström J., Oddershede J.: J. Chem. Phys. 1994, 101, 10775. <https://doi.org/10.1063/1.467890>
54. Sauer S. P. A.: J. Phys. B: At. Mol. Opt. Phys. 1997, 30, 3773. <https://doi.org/10.1088/0953-4075/30/17/007>
55a. Geertsen J., Oddershede J.: J. Chem. Phys. 1986, 85, 2112. <https://doi.org/10.1063/1.451156>
55b. Geertsen J., Eriksen S., Oddershede J.: Adv. Quantum Chem. 1991, 22, 167. <https://doi.org/10.1016/S0065-3276(08)60364-0>
56a. Sauer S. P. A., Oddershede J., Geertsen J.: Mol. Phys. 1992, 76, 445. <https://doi.org/10.1080/00268979200101451>
56b. Sauer S. P. A., Enevoldsen T., Oddershede J.: J. Chem. Phys. 1993, 98, 9748. <https://doi.org/10.1063/1.464353>
56c. Sauer S. P. A., Oddershede J.: Int. J. Quantum Chem. 1994, 50, 317. <https://doi.org/10.1002/qua.560500502>
56d. Sauer S. P. A., Ogilvie J. F.: J. Phys. Chem. 1994, 98, 8617. <https://doi.org/10.1021/j100086a005>
56e. Ogilvie J. F., Oddershede J., Sauer S. P. A.: Chem. Phys. Lett. 1994, 228, 183. <https://doi.org/10.1016/0009-2614(94)00924-4>
56f. Sauer S. P. A.: Chem. Phys. Lett. 1996, 260, 271. <https://doi.org/10.1016/0009-2614(96)00835-4>
56g. Wigglesworth R. D., Raynes W. T., Sauer S. P. A., Oddershede J.: Mol. Phys. 1997, 92, 77. <https://doi.org/10.1080/00268979709482075>
56h. Wigglesworth R. D., Raynes W. T., Sauer S. P. A., Oddershede J.: Mol. Phys. 1998, 94, 851. <https://doi.org/10.1080/00268979809482379>
56i. Sauer S. P. A., Møller C. K., Koch H., Paidarová I., Špirko V.: Chem. Phys. 1998, 238, 385. <https://doi.org/10.1016/S0301-0104(98)00329-2>
56j. Enevoldsen T., Oddershede J., Sauer S. P. A.: Theor. Chem. Acc. 1998, 100, 275. <https://doi.org/10.1007/s002140050388>
56k. Kirpekar S., Sauer S. P. A.: Theor. Chem. Acc. 1999, 103, 146. <https://doi.org/10.1007/s002140050525>
56l. Wigglesworth R. D., Raynes W. T., Kirpekar S., Oddershede J., Sauer S. P. A.: J. Chem. Phys. 2000, 112, 736. <https://doi.org/10.1063/1.480697>
56m. Wigglesworth R. D., Raynes W. T., Kirpekar S., Oddershede J., Sauer S. P. A.: J. Chem. Phys. 2000, 112, 3735. <https://doi.org/10.1063/1.480525>
56n. Sauer S. P. A., Raynes W. T.: J. Chem. Phys. 2000, 113, 3121. <https://doi.org/10.1063/1.1287277>
56o. Grayson M., Sauer S. P. A.: Mol. Phys. 2000, 98, 1981. <https://doi.org/10.1080/00268970009483401>
56p. Provasi P. F., Aucar G. A., Sauer S. P. A.: J. Chem. Phys. 2001, 115, 1324. <https://doi.org/10.1063/1.1379331>
56q. Sauer S. P. A., Raynes W. T., Nicholls R. A.: J. Chem. Phys. 2001, 115, 5994. <https://doi.org/10.1063/1.1398091>
56r. Krivdin L. B., Sauer S. P. A., Peralta J. E., Contreras R. H.: Magn. Reson. Chem. 2002, 40, 187. <https://doi.org/10.1002/mrc.989>
56s. Barone V., Provasi P. F., Peralta J. E., Snyder J. P., Sauer S. P. A., Contreras R. H.: J. Phys. Chem. A 2003, 107, 4748. <https://doi.org/10.1021/jp0300851>
56t. Sauer S. P. A., Krivdin L. B.: Magn. Reson. Chem. 2004, 42, 671. <https://doi.org/10.1002/mrc.1400>
56u. Paidarová I., Sauer S. P. A.: Adv. Quantum Chem. 2005, 48, 185. <https://doi.org/10.1016/S0065-3276(05)48013-2>
56v. Sauer S. P. A.: Adv. Quantum Chem. 2005, 48, 468.
56w. Provasi P. F., Sauer S. P. A.: J. Chem. Theory Comput. 2006, 2, 1019. <https://doi.org/10.1021/ct6000973>
57. Ligabue A., Sauer S. P. A., Lazzeretti P.: J. Chem. Phys. 2003, 118, 6830. <https://doi.org/10.1063/1.1557918>
58. Sánchez M., Ferraro M. B., Alkorta I., Elguero J., Sauer S. P. A.: J. Chem. Phys. 2008, 128, 64318. <https://doi.org/10.1063/1.2826351>
59a. Monkhorst H. J.: Int. J. Quantum Chem., Quantum Chem. Symp. 1977, 11, 421.
59b. Mukherjee D., Mukherjee P. K.: Chem. Phys. 1979, 39, 325. <https://doi.org/10.1016/0301-0104(79)80153-6>
59c. Ghosh S., Mukherjee D., Bhattacharyya S. N.: Chem. Phys. Lett. 1982, 72, 161.
59d. Dalgaard E., Monkhorst H. J.: Phys. Rev. A 1983, 28, 1217. <https://doi.org/10.1103/PhysRevA.28.1217>
59e. Aiga F., Sasagane K., Itho R.: Int. J. Quantum Chem. 1994, 51, 87. <https://doi.org/10.1002/qua.560510204>
60. Datta B., Sen P., Mukherjee D.: J. Phys. Chem. 1995, 99, 6441. <https://doi.org/10.1021/j100017a024>
61. Kobayashi R., Koch H., Jørgensen P.: Chem. Phys. Lett. 1994, 219, 30. <https://doi.org/10.1016/0009-2614(94)00051-4>
62. Christiansen O., Koch H., Jørgensen P.: Chem. Phys. Lett. 1995, 243, 409. <https://doi.org/10.1016/0009-2614(95)00841-Q>
63a. Koch H., Christiansen O., Kobayashi R., Jørgensen P., Helgaker T.: Chem. Phys. Lett. 1994, 228, 233. <https://doi.org/10.1016/0009-2614(94)00898-1>
63b. Koch H., de Merás A. S., Helgaker T., Christiansen O.: J. Chem. Phys. 1996, 104, 4157. <https://doi.org/10.1063/1.471227>
63c. Christiansen C., Halkier A., Koch H., Jørgensen P., Helgaker T.: J. Chem. Phys. 1998, 108, 2801. <https://doi.org/10.1063/1.475671>
63d. Packer M. J., Dalskov E. K., Enevoldsen T., Jensen H. J. Aa., Oddershede J.: J. Chem. Phys. 1996, 105, 5886. <https://doi.org/10.1063/1.472430>
64. Dalton, A Molecular Electronic Structure Program, Release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html.
65. De Lucia F. C., Helminger P., Gordy W.: Phys. Rev. A 1971, 3, 1849. <https://doi.org/10.1103/PhysRevA.3.1849>
66. Cooley J. W.: Math. Comput. 1961, 15, 363.
67. Di Lonardo G., Douglas A. E.: Can. J. Phys. 1973, 51, 434. <https://doi.org/10.1139/p73-057>
68. Čížek M., Horáček J., Domcke W.: Phys. Rev. A 1999, 60, 2873. <https://doi.org/10.1103/PhysRevA.60.2873>
69. Čížek M., Horáček J., Sergenton A.-Ch., Popovič D. B., Allan M., Domcke W., Leininger T., Gadea F. X.: Phys. Rev. A 2001, 63, 62710. <https://doi.org/10.1103/PhysRevA.63.062710>
70. van Stralen J. N. P., Visscher L., Ogilvie J. F.: Phys. Chem. Chem. Phys. 2004, 6, 3779. <https://doi.org/10.1039/b402158d>
71a. Dunning T. H., Jr.: J. Chem. Phys. 1989, 90, 1007. <https://doi.org/10.1063/1.456153>
71b. Kendall R. A., Dunning T. H., Harrison R. J.: J. Chem. Phys. 1992, 96, 6796. <https://doi.org/10.1063/1.462569>
71c. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1993, 98, 1358. <https://doi.org/10.1063/1.464303>
71d. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975. <https://doi.org/10.1063/1.466439>
71e. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1995, 103, 4572. <https://doi.org/10.1063/1.470645>
71f. Wilson A. K., Woon D. E., Peterson K. A., Dunning T. H., Jr.: J. Chem. Phys. 1999, 110, 7667. <https://doi.org/10.1063/1.478678>
72a. Dolg M., Wedig U., Stoll H., Preuss H.: J. Chem. Phys. 1987, 86, 866. <https://doi.org/10.1063/1.452288>
72b. Bergner A., Dolg M., Küchle W., Stoll H., Preu H.: Mol. Phys. 1993, 80, 1431. <https://doi.org/10.1080/00268979300103121>
73. Martin J. M. L., Sundermann A.: J. Chem. Phys. 2001, 114, 3408. <https://doi.org/10.1063/1.1337864>
74. Ligabue A., Sauer S. P. A., Lazzeretti P.: J. Chem. Phys. 2007, 126, 154111. <https://doi.org/10.1063/1.2721536>
75a. Kumar A., Meath W. J.: Can. J. Chem. 1985, 63, 1616. <https://doi.org/10.1139/v85-272>
75b. Kumar A., Meath W. J.: Mol. Phys. 1985, 54, 823. <https://doi.org/10.1080/00268978500103191>
76. Olney T. N., Cann N. M., Cooper G., Brion C. E.: Chem. Phys. 1997, 223, 59. <https://doi.org/10.1016/S0301-0104(97)00145-6>
77. Christiansen O., Hättig C., Gauss J.: J. Chem. Phys. 1998, 109, 4745. <https://doi.org/10.1063/1.477086>
78. Larsen H., Olsen J., Hättig C., Jørgensen P., Christiansen O., Gauss J.: J. Chem. Phys. 1999, 111, 1917. <https://doi.org/10.1063/1.479460>
79. Maroulis G.: J. Mol. Struct. (THEOCHEM) 2003, 633, 177. <https://doi.org/10.1016/S0166-1280(03)00273-2>
80. Salek P., Helgaker T., Vahtras O., Ågren H., Jonsson D., Gauss J.: Mol. Phys. 2005, 103, 439. <https://doi.org/10.1080/00268970412331319254>
81. Maroulis G.: J. Chem. Phys. 1998, 108, 5432. <https://doi.org/10.1063/1.475932>
82. Rizzo A., Coriani S., Fernández B., Christiansen O.: Phys. Chem. Chem. Phys. 2002, 4, 2884. <https://doi.org/10.1039/b109689c>