Collect. Czech. Chem. Commun. 2008, 73, 1299-1313
https://doi.org/10.1135/cccc20081299

Preparation of Au-Pt Nanostructures on Highly Oriented Pyrolytic Graphite Surfaces by Pulsed Laser Deposition and Their Characterization by XPS and AFM Methods

Jan Plšek, Pavel Janda and Zdeněk Bastl*

J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic

References

1. Sinfelt J. H.: Bimetallic Catalysts. Wiley, New York 1983.
2. Ponec V., Bond G. C. in: Studies in Surface Science and Catalysis (B. Delmon and J. T. Yates, Eds), Vol. 95. Elsevier, Amsterdam 1995.
3. Ueda A., Haruta M.: Gold Bull. 1999, 32, 3. <https://doi.org/10.1007/BF03214783>
4. Bond G. C., Thompson D. T.: Gold Bull. 2000, 33, 41. <https://doi.org/10.1007/BF03216579>
5. Valden M., Lai X., Goodman D. W.: Science 1998, 281, 1647. <https://doi.org/10.1126/science.281.5383.1647>
6. Zhou S. H., Jackson G. S., Eichhorn B.: Adv. Funct. Mater. 2007, 17, 3099. <https://doi.org/10.1002/adfm.200700216>
7. Zhou S. H., McIlwrath K., Jackson G., Eichhorn B.: J. Am. Chem. Soc. 2006, 128, 1780. <https://doi.org/10.1021/ja056924+>
8. Zhong C. J., Maye M. M.: Adv. Mater. 2001, 13, 1507. <https://doi.org/10.1002/1521-4095(200110)13:19<1507::AID-ADMA1507>3.0.CO;2-#>
9. Mott D., Luo J., Smith A., Njoki P. N., Wang L., Zhong C. J.: Nanoscale Res. Lett. 2007, 2, 12. <https://doi.org/10.1007/s11671-006-9022-8>
10. Luo J., Njoki P. N., Mott D., Wang L., Zhong C. J.: Langmuir 2006, 22, 2892. <https://doi.org/10.1021/la0529557>
11. Luo J., Njoki P. N., Lin Y., Wang L., Zhong C. J.: Electrochem. Commun. 2006, 8, 581. <https://doi.org/10.1016/j.elecom.2006.02.001>
12. Sachtler J. W. A., Somorjai G. A.: J. Catal. 1983, 81, 77. <https://doi.org/10.1016/0021-9517(83)90148-3>
13. Hammer B., Morikawa Y., Nørskov J. K: Phys. Rev. Lett. 1996, 76, 2141. <https://doi.org/10.1103/PhysRevLett.76.2141>
14. Mihut C., Descorme C., Duprez C., Amiridis M. D.: J. Catal. 2002, 212, 125. <https://doi.org/10.1006/jcat.2002.3770>
15. Luo J., Maye M. M., Petkov V., Kariuki N. N., Wang L., Njoki P., Mott D., Lin Y., Zhong C. J.: Chem. Mater. 2005, 17, 3086. <https://doi.org/10.1021/cm050052t>
16. Xiao S., Hu W., Luo W., Wu Y., Li X., Deng H.: Eur. Phys. J. B 2006, 54, 479. <https://doi.org/10.1140/epjb/e2007-00018-6>
17. Adams R. D., Cotton F. A. (Eds): Catalysis by Di- and Polynuclear Metal Cluster Complexes. VCH Publishers Inc., New York 1997.
18. Xu J., Zhao T., Liang Z., Zhu L.: Chem. Mater. 2008, 20, 1688. <https://doi.org/10.1021/cm703465e>
19. Crooks R. M., Zhao M. Q., Sun L., Chechik V., Yeung L. K.: Acc. Chem. Res. 2001, 34, 181. <https://doi.org/10.1021/ar000110a>
20. Devarajan S., Bera P., Sampath S.: J. Colloid Interface Sci. 2005, 290, 117. <https://doi.org/10.1016/j.jcis.2005.04.034>
21. Zhou S., Jackson G. S., Eichhorn B.: Adv. Funct. Mater. 2007, 17, 3099. <https://doi.org/10.1002/adfm.200700216>
22. Hamm G., Becker C., Henry C. R.: Nanotechnology 2006, 17, 1943. <https://doi.org/10.1088/0957-4484/17/8/024>
23. Heemeier M., Carlsson A. F., Naschitzki M., Schmal M., Baumer M., Freund H.-J.: Angew. Chem. Int. Ed. 2002, 41, 4073. <https://doi.org/10.1002/1521-3773(20021104)41:21<4073::AID-ANIE4073>3.0.CO;2-M>
24. Senkan S., Kahn M., Duan S., Ly A., Leidholm C.: Catal. Today 2006, 117, 291. <https://doi.org/10.1016/j.cattod.2006.05.051>
25. Abdelsayed V., Saoud K. M., El-Shall M. S.: J. Nanoparticle Res. 2006, 8, 519. <https://doi.org/10.1007/s11051-005-9022-0>
26. Yang Y., Saoud K. M., Abdelsayed V., Glaspell G., Deevi S., El-Shall M. S.: Catal. Commun. 2006, 7, 281. <https://doi.org/10.1016/j.catcom.2005.11.014>
27. Rousset J. L., Cadrot A. M., Lianos L., Renouprez A. J.: Eur. Phys. J. D 1999, 9, 425. <https://doi.org/10.1007/s100530050471>
28. Eppler A. S., Rupprechter G., Guczi L., Somorjai G. A.: J. Phys. Chem. B 1997, 101, 9973. <https://doi.org/10.1021/jp972818l>
29. Savastenko N., Volpp H.-R., Gerlach O., Strehlau W.: J. Nanoparticle Res. 2008, 10, 277. <https://doi.org/10.1007/s11051-007-9246-2>
30. Bastl Z., Franc J., Janda P., Pelouchová H., Samec Z.: J. Electroanal. Chem. 2007, 605, 31. <https://doi.org/10.1016/j.jelechem.2007.03.003>
31. www.phy.cuhk.edu.hk/~surface/XPSPEAK.
32. Scofield J. H.: J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129. <https://doi.org/10.1016/0368-2048(76)80015-1>
33. Tanuma S., Powell C. J., Penn D. R.: Surf. Interface Anal. 1994, 21, 165. <https://doi.org/10.1002/sia.740210302>
34. Marcus P., Hinnen C.: Surf. Sci. 1997, 392, 134. <https://doi.org/10.1016/S0039-6028(97)00537-2>
35. Arthur J. R., Cho A. Y.: Surf. Sci. 1973, 36, 641. <https://doi.org/10.1016/0039-6028(73)90409-3>
36. Vitos L., Ruban A. V., Skriver H. L., Kollar J.: Surf. Sci. 1998, 411, 186. <https://doi.org/10.1016/S0039-6028(98)00363-X>
37. Wen Y.-N., Zhang J.-M.: Solid State Commun. 2007, 144, 163. <https://doi.org/10.1016/j.ssc.2007.07.012>
38. Hörnström S. E., Johansson L., Flodström A., Nyholm R., Schmidt-May J.: Surf. Sci. 1985, 160, 561. <https://doi.org/10.1016/0039-6028(85)90794-0>
39. http://www.npl.co.uk/server.php?show=ConWebDoc.605.
40. Büttner M., Oelhafen P.: Surf. Sci. 2006, 600, 1170. <https://doi.org/10.1016/j.susc.2006.01.020>
41. Ziegler J. F., Biersack J. P., Littmark U.: The Stopping and Range of Ions in Solids. Pergamon Press, New York 1985.
42. Galuska A. A., Maden H. H., Allred R. E.: Appl. Surf. Sci. 1998, 32, 253. <https://doi.org/10.1016/0169-4332(88)90012-8>
43. Lascovich J. M., Giorgi R., Scaglione S.: Appl. Surf. Sci. 1991, 47, 17. <https://doi.org/10.1016/0169-4332(91)90098-5>
44. Jackson S. T., Nuzzo R. G.: Appl. Surf. Sci. 1995, 90, 195. <https://doi.org/10.1016/0169-4332(95)00079-8>
45. Turgeon S., Paynter R. W.: Thin Solid Films 2001, 394, 44. <https://doi.org/10.1016/S0040-6090(01)01134-8>
46. Fauth K., Heßler M., Batchelor D., Schütz G.: Surf. Sci. 2003, 529, 397. <https://doi.org/10.1016/S0039-6028(03)00333-9>
47. Lopez-Salido I., Lim D. Ch., Dietsche R., Bertram N., Kim Y. D.: J. Chem. Phys. B 2006, 110, 1128. <https://doi.org/10.1021/jp054790g>
48. Mason M. G.: Phys. Rev. B 1983, 27, 748. <https://doi.org/10.1103/PhysRevB.27.748>
49. Bastl Z.: Vacuum 1986, 36, 447. <https://doi.org/10.1016/0042-207X(86)90225-3>
50. Ptáček P., Bastl Z.: Appl. Surf. Sci. 1990, 45, 319. <https://doi.org/10.1016/0169-4332(90)90041-W>
51. Mason M. G. in: Cluster Models for Surface and Bulk Phenomena (G. Pachcioni, Ed.). Plenum Press, New York 1992; and references therein.
52. Bastl Z.: Collect. Czech. Chem. Commun. 1995, 60, 383. <https://doi.org/10.1135/cccc19950383>
53. Richter B., Kuhlenbeck H., Freund H.-J., Bagus P. S.: Phys. Rev. Lett. 2004, 93, 026805. <https://doi.org/10.1103/PhysRevLett.93.026805>
54. Citrin P., Wertheim G. K., Baer Y.: Phys. Rev. 1983, 27, 3160. <https://doi.org/10.1103/PhysRevB.27.3160>
55. Bastl Z., Pick Š.: Surf. Sci. 2004, 566–568, 832.
56. Howells A. R., Hung L., Chottiner G. S., Scherson D. A.: Solid State Ionics 2002, 150, 53. <https://doi.org/10.1016/S0167-2738(02)00263-1>