Crossref Cited-by Linking logo

Collect. Czech. Chem. Commun. 2008, 73, 1261-1270
https://doi.org/10.1135/cccc20081261

Quantum Chemical Benchmark Energy and Geometry Database for Molecular Clusters and Complex Molecular Systems (www.begdb.com): A Users Manual and Examples

Jan Řezáča, Petr Jurečkab, Kevin E. Rileya, Jiří Černýa, Haydee Valdesa, Kristýna Pluháčkováa, Karel Berkaa, Tomáš Řezáča, Michal Pitoňáka, Jiří Vondrášeka and Pavel Hobzaa,b,*

a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. and Center for Biomolecules and Complex Systems, 166 10 Prague 6, Czech Republic
b Department of Physical Chemistry, Palacký University, třída Svobody 26, 771 46 Olomouc, Czech Republic

Crossref Cited-by Linking

  • Hancock Amy C., Giudici Erica, Goerigk Lars: How do spin‐scaled double hybrids designed for excitation energies perform for noncovalent excited‐state interactions? An investigation on aromatic excimer models. J Comput Chem 2024. <https://doi.org/10.1002/jcc.27351>
  • Wilson Cameron J. G., Plesniar Jan, Kuhn Heike, Armstrong Jeff, Wood Peter A., Parsons Simon: The Advantages of Flexibility: The Role of Entropy in Crystal Structures Containing C–H···F Interactions. Crystal Growth & Design 2024, 24, 2217. <https://doi.org/10.1021/acs.cgd.4c00042>
  • Dasgupta Saswata, Palos Etienne, Pan Yuanhui, Paesani Francesco: Balance between Physical Interpretability and Energetic Predictability in Widely Used Dispersion-Corrected Density Functionals. J. Chem. Theory Comput. 2024, 20, 49. <https://doi.org/10.1021/acs.jctc.3c00903>
  • Stewart James J. P., Stewart Anna C.: A semiempirical method optimized for modeling proteins. J Mol Model 2023, 29. <https://doi.org/10.1007/s00894-023-05695-1>
  • Pierce Karl, Valeev Edward F.: Efficient Construction of Canonical Polyadic Approximations of Tensor Networks. J. Chem. Theory Comput. 2023, 19, 71. <https://doi.org/10.1021/acs.jctc.2c00861>
  • Yourdkhani Sirous, Klimeš Jiří: Using Noncovalent Interactions to Test the Precision of Projector-Augmented Wave Data Sets. J. Chem. Theory Comput. 2023, 19, 8871. <https://doi.org/10.1021/acs.jctc.3c00930>
  • Kim Shinae, Conrad Justin A., Tow Garrett M., Maginn Edward J., Boatz Jerry A., Gordon Mark S.: Intermolecular interactions in clusters of ethylammonium nitrate and 1-amino-1,2,3-triazole. Phys. Chem. Chem. Phys. 2023, 25, 30428. <https://doi.org/10.1039/D3CP02407E>
  • Palos Etienne, Dasgupta Saswata, Lambros Eleftherios, Paesani Francesco: Data-driven many-body potentials from density functional theory for aqueous phase chemistry. Chemical Physics Reviews 2023, 4. <https://doi.org/10.1063/5.0129613>
  • Cabaleiro-Lago Enrique M., Fernández Berta, Rodríguez-Fernández Roberto, Rodríguez-Otero Jesús, Vázquez Saulo A.: Functional group corrections to the GFN2-xTB and PM6 semiempirical methods for noncovalent interactions in alkanes and alkenes. The Journal of Chemical Physics 2023, 158. <https://doi.org/10.1063/5.0140668>
  • Nakano Kousuke, Kohulák Oto, Raghav Abhishek, Casula Michele, Sorella Sandro: TurboGenius: Python suite for high-throughput calculations of ab initio quantum Monte Carlo methods. The Journal of Chemical Physics 2023, 159. <https://doi.org/10.1063/5.0179003>
  • Seijas Luis E., Zambrano Cesar H., Almeida Rafael, Alí-Torres Jorge, Rincón Luis, Torres Fernando Javier: Exploring the Non-Covalent Bonding in Water Clusters. IJMS 2023, 24, 5271. <https://doi.org/10.3390/ijms24065271>
  • Matveeva Regina, Falck Erichsen Merete, Koch Henrik, Høyvik Ida‐Marie: The effect of midbond functions on interaction energies computed using MP2 and CCSD(T). J Comput Chem 2022, 43, 121. <https://doi.org/10.1002/jcc.26777>
  • Palos Etienne, Lambros Eleftherios, Swee Steven, Hu Jie, Dasgupta Saswata, Paesani Francesco: Assessing the Interplay between Functional-Driven and Density-Driven Errors in DFT Models of Water. J. Chem. Theory Comput. 2022, 18, 3410. <https://doi.org/10.1021/acs.jctc.2c00050>
  • Dasgupta Saswata, Shahi Chandra, Bhetwal Pradeep, Perdew John P., Paesani Francesco: How Good Is the Density-Corrected SCAN Functional for Neutral and Ionic Aqueous Systems, and What Is So Right about the Hartree–Fock Density?. J. Chem. Theory Comput. 2022, 18, 4745. <https://doi.org/10.1021/acs.jctc.2c00313>
  • Tahir Muhammad N., Zhu Tong, Shang Honghui, Li Jia, Blum Volker, Ren Xinguo: Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks. J. Chem. Theory Comput. 2022, 18, 5297. <https://doi.org/10.1021/acs.jctc.2c00512>
  • Brémond Eric, Li Hanwei, Sancho-García Juan Carlos, Adamo Carlo: Double Hybrids and Noncovalent Interactions: How Far Can We Go?. J. Phys. Chem. A 2022, 126, 2590. <https://doi.org/10.1021/acs.jpca.2c01193>
  • Chakraborty Anish, Tribedi Soumi, Maitra Rahul: A double exponential coupled cluster theory in the fragment molecular orbital framework. The Journal of Chemical Physics 2022, 156. <https://doi.org/10.1063/5.0090115>
  • Palos Etienne, Lambros Eleftherios, Dasgupta Saswata, Paesani Francesco: Density functional theory of water with the machine-learned DM21 functional. The Journal of Chemical Physics 2022, 156. <https://doi.org/10.1063/5.0090862>
  • Ramos Chloe, Muehlbrad Jeremiah, Janesko Benjamin G.: Density functionals with full nonlocal exchange, nonlocal rung‐3.5 correlation, and D3 dispersion: Combined accuracy for general main‐group thermochemistry, kinetics, and noncovalent interactions. J Comput Chem 2021, 42, 1974. <https://doi.org/10.1002/jcc.26728>
  • Takaya Daisuke, Watanabe Chiduru, Nagase Shunpei, Kamisaka Kikuko, Okiyama Yoshio, Moriwaki Hirotomo, Yuki Hitomi, Sato Tomohiro, Kurita Noriyuki, Yagi Yoichiro, Takagi Tatsuya, Kawashita Norihito, Takaba Kenichiro, Ozawa Tomonaga, Takimoto-Kamimura Midori, Tanaka Shigenori, Fukuzawa Kaori, Honma Teruki: FMODB: The World’s First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method. J. Chem. Inf. Model. 2021, 61, 777. <https://doi.org/10.1021/acs.jcim.0c01062>
  • Tölle Johannes, Deilmann Thorsten, Rohlfing Michael, Neugebauer Johannes: Subsystem-Based GW/Bethe–Salpeter Equation. J. Chem. Theory Comput. 2021, 17, 2186. <https://doi.org/10.1021/acs.jctc.0c01307>
  • Pierce Karl, Rishi Varun, Valeev Edward F.: Robust Approximation of Tensor Networks: Application to Grid-Free Tensor Factorization of the Coulomb Interaction. J. Chem. Theory Comput. 2021, 17, 2217. <https://doi.org/10.1021/acs.jctc.0c01310>
  • Pérez-Tabero Sergio, Fernández Berta, Cabaleiro-Lago Enrique M., Martínez-Núñez Emilio, Vázquez Saulo A.: New Approach for Correcting Noncovalent Interactions in Semiempirical Quantum Mechanical Methods: The Importance of Multiple-Orientation Sampling. J. Chem. Theory Comput. 2021, 17, 5556. <https://doi.org/10.1021/acs.jctc.1c00365>
  • Al-Hamdani Yasmine S., Nagy Péter R., Zen Andrea, Barton Dennis, Kállay Mihály, Brandenburg Jan Gerit, Tkatchenko Alexandre: Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nat Commun 2021, 12. <https://doi.org/10.1038/s41467-021-24119-3>
  • Hao Zi-kai, Lv Hai-feng, Wang Da-yong, Wu Xiao-jun: High-performance chemical information database towards accelerating discovery of metal-organic frameworks for gas adsorption with machine learning. Chinese Journal of Chemical Physics 2021, 34, 436. <https://doi.org/10.1063/1674-0068/cjcp2104079>
  • Tribedi Soumi, Chakraborty Anish, Maitra Rahul: Formulation of a Dressed Coupled-Cluster Method with Implicit Triple Excitations and Benchmark Application to Hydrogen-Bonded Systems. J. Chem. Theory Comput. 2020, 16, 6317. <https://doi.org/10.1021/acs.jctc.0c00736>
  • Kang Sungwoo, Woo Jeheon, Kim Jaewook, Kim Hyeonsu, Kim Yongjun, Lim Jaechang, Choi Sunghwan, Kim Woo Youn: ACE-Molecule: An open-source real-space quantum chemistry package. The Journal of Chemical Physics 2020, 152. <https://doi.org/10.1063/5.0002959>
  • Meier de Andrade Ageo, Kullgren Jolla, Broqvist Peter: Quantitative and qualitative performance of density functional theory rationalized by reduced density gradient distributions. Phys. Rev. B 2020, 102. <https://doi.org/10.1103/PhysRevB.102.075115>
  • Czernek Jiří, Brus Jiří: Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments. IJMS 2020, 21, 7908. <https://doi.org/10.3390/ijms21217908>
  • Řezáč Jan: Description of halogen bonding in semiempirical quantum‐mechanical and self‐consistent charge density‐functional tight‐binding methods. J Comput Chem 2019, 40, 1633. <https://doi.org/10.1002/jcc.25816>
  • Cai Wei, Liu Conghu, Lai Kee-hung, Li Li, Cunha Jorge, Hu Luoke: Energy performance certification in mechanical manufacturing industry: A review and analysis. Energy Conversion and Management 2019, 186, 415. <https://doi.org/10.1016/j.enconman.2019.02.041>
  • Pham Buu Q., Gordon Mark S.: Compressing the Four-Index Two-Electron Repulsion Integral Matrix using the Resolution-of-the-Identity Approximation Combined with the Rank Factorization Approximation. J. Chem. Theory Comput. 2019, 15, 2254. <https://doi.org/10.1021/acs.jctc.8b01256>
  • Proppe Jonny, Gugler Stefan, Reiher Markus: Gaussian Process-Based Refinement of Dispersion Corrections. J. Chem. Theory Comput. 2019, 15, 6046. <https://doi.org/10.1021/acs.jctc.9b00627>
  • Leduc Théo, Aubert Emmanuel, Espinosa Enrique, Jelsch Christian, Iordache Cristian, Guillot Benoît: Polarization of Electron Density Databases of Transferable Multipolar Atoms. J. Phys. Chem. A 2019, 123, 7156. <https://doi.org/10.1021/acs.jpca.9b05051>
  • Wappett Dominique A., Goerigk Lars: Toward a Quantum-Chemical Benchmark Set for Enzymatically Catalyzed Reactions: Important Steps and Insights. J. Phys. Chem. A 2019, 123, 7057. <https://doi.org/10.1021/acs.jpca.9b05088>
  • Sattasathuchana Tosaporn, Xu Peng, Gordon Mark S.: An Accurate Quantum-Based Approach to Explicit Solvent Effects: Interfacing the General Effective Fragment Potential Method with Ab Initio Electronic Structure Theory. J. Phys. Chem. A 2019, 123, 8460. <https://doi.org/10.1021/acs.jpca.9b05801>
  • Alkan Melisa, Xu Peng, Gordon Mark S.: Many-Body Dispersion in Molecular Clusters. J. Phys. Chem. A 2019, 123, 8406. <https://doi.org/10.1021/acs.jpca.9b05977>
  • Parks Holden L., McGaughey Alan. J. H., Viswanathan Venkatasubramanian: Uncertainty Quantification in First-Principles Predictions of Harmonic Vibrational Frequencies of Molecules and Molecular Complexes. J. Phys. Chem. C 2019, 123, 4072. <https://doi.org/10.1021/acs.jpcc.8b11689>
  • Rincon Luis, Javier Torres F., Becerra Marcos, Liu Shubin, Fritsch Alain, Almeida Rafael: On the separation of the information content of the Fermi and Coulomb holes and their influence on the electronic properties of molecular systems. Molecular Physics 2019, 117, 610. <https://doi.org/10.1080/00268976.2018.1530462>
  • Cipcigan F. S., Crain J., Sokhan V. P., Martyna G. J.: Electronic coarse graining: Predictive atomistic modeling of condensed matter. Rev. Mod. Phys. 2019, 91. <https://doi.org/10.1103/RevModPhys.91.025003>
  • Suárez Dimas, Díaz Natalia, Francisco Evelio, Martín Pendás Angel: Application of the Interacting Quantum Atoms Approach to the S66 and Ionic‐Hydrogen‐Bond Datasets for Noncovalent Interactions. ChemPhysChem 2018, 19, 973. <https://doi.org/10.1002/cphc.201701021>
  • Cai Wei, Liu Fei, Dinolov Ognyan, Xie Jun, Liu Peiji, Tuo Junbo: Energy benchmarking rules in machining systems. Energy 2018, 142, 258. <https://doi.org/10.1016/j.energy.2017.10.030>
  • Řezáč Jan, Bím Daniel, Gutten Ondrej, Rulíšek Lubomír: Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set. J. Chem. Theory Comput. 2018, 14, 1254. <https://doi.org/10.1021/acs.jctc.7b01074>
  • Dutta Narendra Nath, Patkowski Konrad: Improving “Silver-Standard” Benchmark Interaction Energies with Bond Functions. J. Chem. Theory Comput. 2018, 14, 3053. <https://doi.org/10.1021/acs.jctc.8b00204>
  • Clement Marjory C., Zhang Jinmei, Lewis Cannada A., Yang Chao, Valeev Edward F.: Optimized Pair Natural Orbitals for the Coupled Cluster Methods. J. Chem. Theory Comput. 2018, 14, 4581. <https://doi.org/10.1021/acs.jctc.8b00294>
  • Kesharwani Manoj K., Manna Debashree, Sylvetsky Nitai, Martin Jan M. L.: The X40×10 Halogen Bonding Benchmark Revisited: Surprising Importance of (n–1)d Subvalence Correlation. J. Phys. Chem. A 2018, 122, 2184. <https://doi.org/10.1021/acs.jpca.7b10958>
  • Kim Shinae, Kaliszewski Chelsea M., Guidez Emilie B., Gordon Mark S.: Benchmarking the Effective Fragment Potential Dispersion Correction on the S22 Test Set. J. Phys. Chem. A 2018, 122, 4076. <https://doi.org/10.1021/acs.jpca.7b11628>
  • Schoeberle Luke, Guidez Emilie B., Gordon Mark S.: Benchmarking of the R–7 Anisotropic Dispersion Energy Term on the S22 Dimer Test Set. J. Phys. Chem. A 2018, 122, 6100. <https://doi.org/10.1021/acs.jpca.8b04451>
  • Kesharwani Manoj K., Karton Amir, Sylvetsky Nitai, Martin Jan M. L.: The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Aust. J. Chem. 2018, 71, 238. <https://doi.org/10.1071/CH17588>
  • Guttmann Robin, Sax Alexander F.: Dispersion Interactions and the Stability of Amine Dimers. ChemistryOpen 2017, 6, 571. <https://doi.org/10.1002/open.201700052>
  • Sierański Tomasz: Discovering the stacking landscape of a pyridine-pyridine system. J Mol Model 2017, 23. <https://doi.org/10.1007/s00894-017-3496-4>
  • Cai Wei, Liu Fei, Xie Jun, Liu Peiji, Tuo Junbo: A tool for assessing the energy demand and efficiency of machining systems: Energy benchmarking. Energy 2017, 138, 332. <https://doi.org/10.1016/j.energy.2017.07.039>
  • Temelso Berhane, Mabey Joel M., Kubota Toshiro, Appiah-Padi Nana, Shields George C.: ArbAlign: A Tool for Optimal Alignment of Arbitrarily Ordered Isomers Using the Kuhn–Munkres Algorithm. J. Chem. Inf. Model. 2017, 57, 1045. <https://doi.org/10.1021/acs.jcim.6b00546>
  • Manna Debashree, Kesharwani Manoj K., Sylvetsky Nitai, Martin Jan M. L.: Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets. J. Chem. Theory Comput. 2017, 13, 3136. <https://doi.org/10.1021/acs.jctc.6b01046>
  • Wang Bing, Dobosh Paul A., Chalk Stuart, Sopek Mirek, Ostlund Neil S.: Computational Chemistry Data Management Platform Based on the Semantic Web. J. Phys. Chem. A 2017, 121, 298. <https://doi.org/10.1021/acs.jpca.6b10489>
  • Goerigk Lars, Hansen Andreas, Bauer Christoph, Ehrlich Stephan, Najibi Asim, Grimme Stefan: A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017, 19, 32184. <https://doi.org/10.1039/C7CP04913G>
  • Gonthier Jérôme F., Head-Gordon Martin: Compressed representation of dispersion interactions and long-range electronic correlations. The Journal of Chemical Physics 2017, 147. <https://doi.org/10.1063/1.4997186>
  • Sylvetsky Nitai, Kesharwani Manoj K., Martin Jan M. L.: The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes. The Journal of Chemical Physics 2017, 147. <https://doi.org/10.1063/1.4998332>
  • Burns Lori A., Faver John C., Zheng Zheng, Marshall Michael S., Smith Daniel G. A., Vanommeslaeghe Kenno, MacKerell Alexander D., Merz Kenneth M., Sherrill C. David: The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. The Journal of Chemical Physics 2017, 147. <https://doi.org/10.1063/1.5001028>
  • Řezáč Jan, Hobza Pavel: Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chem. Rev. 2016, 116, 5038. <https://doi.org/10.1021/acs.chemrev.5b00526>
  • Christensen Anders S., Kubař Tomáš, Cui Qiang, Elstner Marcus: Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chem. Rev. 2016, 116, 5301. <https://doi.org/10.1021/acs.chemrev.5b00584>
  • Höfener Sebastian, Visscher Lucas: Wave Function Frozen-Density Embedding: Coupled Excitations. J. Chem. Theory Comput. 2016, 12, 549. <https://doi.org/10.1021/acs.jctc.5b00821>
  • Brauer Brina, Kesharwani Manoj K., Kozuch Sebastian, Martin Jan M. L.: The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory. Phys. Chem. Chem. Phys. 2016, 18, 20905. <https://doi.org/10.1039/C6CP00688D>
  • Bernardo Carlos E. P., Silva Pedro J.: Computational exploration of the reaction mechanism of the Cu + -catalysed synthesis of indoles from N -aryl enaminones. R. Soc. open sci. 2016, 3, 150582. <https://doi.org/10.1098/rsos.150582>
  • Huang Ming, Giese Timothy J., York Darrin M.: Nucleic acid reactivity: Challenges for next-generation semiempirical quantum models. J. Comput. Chem. 2015, 36, 1370. <https://doi.org/10.1002/jcc.23933>
  • Martin Benjamin P., Brandon Christopher J., Stewart James J. P., Braun‐Sand Sonja B.: Accuracy issues involved in modeling in vivo protein structures using PM 7. Proteins 2015, 83, 1427. <https://doi.org/10.1002/prot.24826>
  • Hughes Timothy J., Kandathil Shaun M., Popelier Paul L.A.: Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 136, 32. <https://doi.org/10.1016/j.saa.2013.10.059>
  • Řezáč Jan, Huang Yuanhang, Hobza Pavel, Beran Gregory J. O.: Benchmark Calculations of Three-Body Intermolecular Interactions and the Performance of Low-Cost Electronic Structure Methods. J. Chem. Theory Comput. 2015, 11, 3065. <https://doi.org/10.1021/acs.jctc.5b00281>
  • Sedlak Robert, Kolář Michal H., Hobza Pavel: Polar Flattening and the Strength of Halogen Bonding. J. Chem. Theory Comput. 2015, 11, 4727. <https://doi.org/10.1021/acs.jctc.5b00687>
  • Kubillus Maximilian, Kubař Tomáš, Gaus Michael, Řezáč Jan, Elstner Marcus: Parameterization of the DFTB3 Method for Br, Ca, Cl, F, I, K, and Na in Organic and Biological Systems. J. Chem. Theory Comput. 2015, 11, 332. <https://doi.org/10.1021/ct5009137>
  • Schlüns Danny, Klahr Kevin, Mück-Lichtenfeld Christian, Visscher Lucas, Neugebauer Johannes: Subsystem-DFT potential-energy curves for weakly interacting systems. Phys. Chem. Chem. Phys. 2015, 17, 14323. <https://doi.org/10.1039/C4CP04936E>
  • Shao Yihan, Gan Zhengting, Epifanovsky Evgeny, Gilbert Andrew T.B., Wormit Michael, Kussmann Joerg, Lange Adrian W., Behn Andrew, Deng Jia, Feng Xintian, Ghosh Debashree, Goldey Matthew, Horn Paul R., Jacobson Leif D., Kaliman Ilya, Khaliullin Rustam Z., Kuś Tomasz, Landau Arie, Liu Jie, Proynov Emil I., Rhee Young Min, Richard Ryan M., Rohrdanz Mary A., Steele Ryan P., Sundstrom Eric J., Woodcock H. Lee, Zimmerman Paul M., Zuev Dmitry, Albrecht Ben, Alguire Ethan, Austin Brian, Beran Gregory J. O., Bernard Yves A., Berquist Eric, Brandhorst Kai, Bravaya Ksenia B., Brown Shawn T., Casanova David, Chang Chun-Min, Chen Yunqing, Chien Siu Hung, Closser Kristina D., Crittenden Deborah L., Diedenhofen Michael, DiStasio Robert A., Do Hainam, Dutoi Anthony D., Edgar Richard G., Fatehi Shervin, Fusti-Molnar Laszlo, Ghysels An, Golubeva-Zadorozhnaya Anna, Gomes Joseph, Hanson-Heine Magnus W.D., Harbach Philipp H.P., Hauser Andreas W., Hohenstein Edward G., Holden Zachary C., Jagau Thomas-C., Ji Hyunjun, Kaduk Benjamin, Khistyaev Kirill, Kim Jaehoon, Kim Jihan, King Rollin A., Klunzinger Phil, Kosenkov Dmytro, Kowalczyk Tim, Krauter Caroline M., Lao Ka Un, Laurent Adèle D., Lawler Keith V., Levchenko Sergey V., Lin Ching Yeh, Liu Fenglai, Livshits Ester, Lochan Rohini C., Luenser Arne, Manohar Prashant, Manzer Samuel F., Mao Shan-Ping, Mardirossian Narbe, Marenich Aleksandr V., Maurer Simon A., Mayhall Nicholas J., Neuscamman Eric, Oana C. Melania, Olivares-Amaya Roberto, O’Neill Darragh P., Parkhill John A., Perrine Trilisa M., Peverati Roberto, Prociuk Alexander, Rehn Dirk R., Rosta Edina, Russ Nicholas J., Sharada Shaama M., Sharma Sandeep, Small David W., Sodt Alexander, Stein Tamar, Stück David, Su Yu-Chuan, Thom Alex J.W., Tsuchimochi Takashi, Vanovschi Vitalii, Vogt Leslie, Vydrov Oleg, Wang Tao, Watson Mark A., Wenzel Jan, White Alec, Williams Christopher F., Yang Jun, Yeganeh Sina, Yost Shane R., You Zhi-Qiang, Zhang Igor Ying, Zhang Xing, Zhao Yan, Brooks Bernard R., Chan Garnet K.L., Chipman Daniel M., Cramer Christopher J., Goddard William A., Gordon Mark S., Hehre Warren J., Klamt Andreas, Schaefer Henry F., Schmidt Michael W., Sherrill C. David, Truhlar Donald G., Warshel Arieh, Xu Xin, Aspuru-Guzik Alán, Baer Roi, Bell Alexis T., Besley Nicholas A., Chai Jeng-Da, Dreuw Andreas, Dunietz Barry D., Furlani Thomas R., Gwaltney Steven R., Hsu Chao-Ping, Jung Yousung, Kong Jing, Lambrecht Daniel S., Liang WanZhen, Ochsenfeld Christian, Rassolov Vitaly A., Slipchenko Lyudmila V., Subotnik Joseph E., Van Voorhis Troy, Herbert John M., Krylov Anna I., Gill Peter M.W., Head-Gordon Martin: Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Molecular Physics 2015, 113, 184. <https://doi.org/10.1080/00268976.2014.952696>
  • Peterson Kirk A., Kesharwani Manoj K., Martin Jan M.L.: The cc-pV5Z-F12 basis set: reaching the basis set limit in explicitly correlated calculations. Molecular Physics 2015, 113, 1551. <https://doi.org/10.1080/00268976.2014.985755>
  • Bhattacharya Sohini, Mittal Shriyaa, Panigrahi Swati, Sharma Purshotam, S. P. Preethi, Paul Rahul, Halder Sukanya, Halder Antarip, Bhattacharyya Dhananjay, Mitra Abhijit: RNABP COGEST: a resource for investigating functional RNAs. Database 2015, 2015. <https://doi.org/10.1093/database/bav011>
  • Sałdyka Magdalena: Interaction of N-hydroxyurea with strong proton donors: HCl and HF. Chemical Physics 2014, 444, 15. <https://doi.org/10.1016/j.chemphys.2014.09.009>
  • Goldey Matthew B., Head-Gordon Martin: Convergence of attenuated second order Møller–Plesset perturbation theory towards the complete basis set limit. Chemical Physics Letters 2014, 608, 249. <https://doi.org/10.1016/j.cplett.2014.05.092>
  • Li Amanda, Muddana Hari S., Gilson Michael K.: Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches. J. Chem. Theory Comput. 2014, 10, 1563. <https://doi.org/10.1021/ct401111c>
  • Brauer Brina, Kesharwani Manoj K., Martin Jan M. L.: Some Observations on Counterpoise Corrections for Explicitly Correlated Calculations on Noncovalent Interactions. J. Chem. Theory Comput. 2014, 10, 3791. <https://doi.org/10.1021/ct500513b>
  • Goldey Matthew, Head-Gordon Martin: Separate Electronic Attenuation Allowing a Spin-Component-Scaled Second-Order Møller–Plesset Theory to Be Effective for Both Thermochemistry and Noncovalent Interactions. J. Phys. Chem. B 2014, 118, 6519. <https://doi.org/10.1021/jp4126478>
  • Turner Michael J., Grabowsky Simon, Jayatilaka Dylan, Spackman Mark A.: Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals. J. Phys. Chem. Lett. 2014, 5, 4249. <https://doi.org/10.1021/jz502271c>
  • Bereau Tristan, von Lilienfeld O. Anatole: Toward transferable interatomic van der Waals interactions without electrons: The role of multipole electrostatics and many-body dispersion. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4885339>
  • Heßelmann Andreas, Korona Tatiana: Intermolecular symmetry-adapted perturbation theory study of large organic complexes. The Journal of Chemical Physics 2014, 141. <https://doi.org/10.1063/1.4893990>
  • Vymětal Jiří, Bathula Sreenivas Reddy, Černý Jiří, Chaloupková Radka, Žídek Lukáš, Sklenář Vladimír, Vondrášek Jiří: Retro operation on the Trp-cage miniprotein sequence produces an unstructured molecule capable of folding similar to the original only upon 2,2,2-trifluoroethanol addition. Protein Engineering, Design and Selection 2014, 27, 463. <https://doi.org/10.1093/protein/gzu046>
  • Kromann Jimmy C., Christensen Anders S., Steinmann Casper, Korth Martin, Jensen Jan H.: A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method: PM6-D3H+. PeerJ 2014, 2, e449. <https://doi.org/10.7717/peerj.449>
  • Sedlak Robert, Riley Kevin E., Řezáč Jan, Pitoňák Michal, Hobza Pavel: MP2.5 and MP2.X: Approaching CCSD(T) Quality Description of Noncovalent Interaction at the Cost of a Single CCSD Iteration. ChemPhysChem 2013, 14, 698. <https://doi.org/10.1002/cphc.201200850>
  • Lepšík Martin, Řezáč Jan, Kolář Michal, Pecina Adam, Hobza Pavel, Fanfrlík Jindřich: The Semiempirical Quantum Mechanical Scoring Function for In Silico Drug Design. ChemPlusChem 2013, 78, 921. <https://doi.org/10.1002/cplu.201300199>
  • Kysilka J., Vondrášek J.: A systematic method for analysing the protein hydration structure of T4 lysozyme. J of Molecular Recognition 2013, 26, 479. <https://doi.org/10.1002/jmr.2290>
  • Tew David P., Hättig Christof: Pair natural orbitals in explicitly correlated second‐order møller–plesset theory. Int J of Quantum Chemistry 2013, 113, 224. <https://doi.org/10.1002/qua.24098>
  • Stewart James J. P.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J Mol Model 2013, 19, 1. <https://doi.org/10.1007/s00894-012-1667-x>
  • Heßelmann Andreas: Assessment of a Nonlocal Correction Scheme to Semilocal Density Functional Theory Methods. J. Chem. Theory Comput. 2013, 9, 273. <https://doi.org/10.1021/ct300735g>
  • Doemer Manuel, Tavernelli Ivano, Rothlisberger Ursula: Intricacies of Describing Weak Interactions Involving Halogen Atoms within Density Functional Theory. J. Chem. Theory Comput. 2013, 9, 955. <https://doi.org/10.1021/ct3007524>
  • Vymětal Jiří, Vondrášek Jiří: Critical Assessment of Current Force Fields. Short Peptide Test Case. J. Chem. Theory Comput. 2013, 9, 441. <https://doi.org/10.1021/ct300794a>
  • Platts James A., Hill J. Grant, Riley Kevin E., Řezáč Jan, Hobza Pavel: Basis Set Dependence of Interaction Energies Computed Using Composite Post-MP2 Methods. J. Chem. Theory Comput. 2013, 9, 330. <https://doi.org/10.1021/ct300842d>
  • Sedlak Robert, Janowski Tomasz, Pitoňák Michal, Řezáč Jan, Pulay Peter, Hobza Pavel: Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes. J. Chem. Theory Comput. 2013, 9, 3364. <https://doi.org/10.1021/ct400036b>
  • Řezáč Jan, Hobza Pavel: Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the “Gold Standard,” CCSD(T) at the Complete Basis Set Limit?. J. Chem. Theory Comput. 2013, 9, 2151. <https://doi.org/10.1021/ct400057w>
  • Goldey Matthew, Dutoi Anthony, Head-Gordon Martin: Attenuated second-order Møller–Plesset perturbation theory: performance within the aug-cc-pVTZ basis. Phys. Chem. Chem. Phys. 2013, 15, 15869. <https://doi.org/10.1039/c3cp51826d>
  • Maurer Simon A., Beer Matthias, Lambrecht Daniel S., Ochsenfeld Christian: Linear-scaling symmetry-adapted perturbation theory with scaled dispersion. The Journal of Chemical Physics 2013, 139. <https://doi.org/10.1063/1.4827297>
  • Ren Xinguo, Rinke Patrick, Scuseria Gustavo E., Scheffler Matthias: Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks. Phys. Rev. B 2013, 88. <https://doi.org/10.1103/PhysRevB.88.035120>
  • Řezáč Jan, Riley Kevin E., Hobza Pavel: Evaluation of the performance of post‐Hartree‐Fock methods in terms of intermolecular distance in noncovalent complexes. J Comput Chem 2012, 33, 691. <https://doi.org/10.1002/jcc.22899>
  • Hobza Pavel: Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies. Acc. Chem. Res. 2012, 45, 663. <https://doi.org/10.1021/ar200255p>
  • Řezáč Jan, Hobza Pavel: Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012, 8, 141. <https://doi.org/10.1021/ct200751e>
  • Řezáč Jan, Riley Kevin E., Hobza Pavel: Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules. J. Chem. Theory Comput. 2012, 8, 4285. <https://doi.org/10.1021/ct300647k>
  • Riley Kevin E., Platts James A., Řezáč Jan, Hobza Pavel, Hill J. Grant: Assessment of the Performance of MP2 and MP2 Variants for the Treatment of Noncovalent Interactions. J. Phys. Chem. A 2012, 116, 4159. <https://doi.org/10.1021/jp211997b>
  • Goldey Matthew, Head-Gordon Martin: Attenuating Away the Errors in Inter- and Intramolecular Interactions from Second-Order Møller–Plesset Calculations in the Small Aug-cc-pVDZ Basis Set. J. Phys. Chem. Lett. 2012, 3, 3592. <https://doi.org/10.1021/jz301694b>
  • Riley Kevin E., Řezáč Jan, Hobza Pavel: The performance of MP2.5 and MP2.X methods for nonequilibrium geometries of molecular complexes. Phys. Chem. Chem. Phys. 2012, 14, 13187. <https://doi.org/10.1039/c2cp41874f>
  • Klimeš Jiří, Michaelides Angelos: Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. The Journal of Chemical Physics 2012, 137. <https://doi.org/10.1063/1.4754130>
  • Glöß Andreas, Brändle Martin P., Klopper Wim, Lüthi Hans P.: The MP2 binding energy of the ethene dimer and its dependence on the auxiliary basis sets: a benchmark study using a newly developed infrastructure for the processing of quantum chemical data. Molecular Physics 2012, 110, 2523. <https://doi.org/10.1080/00268976.2012.708793>
  • KOLB BRIAN, THONHAUSER T.: MOLECULAR BIOLOGY AT THE QUANTUM LEVEL: CAN MODERN DENSITY FUNCTIONAL THEORY FORGE THE PATH?. Nano LIFE 2012, 02, 1230006. <https://doi.org/10.1142/S1793984412300063>
  • Mukherjee Goutam, Patra Niladri, Barua Poranjyoti, Jayaram B.: A fast empirical GAFF compatible partial atomic charge assignment scheme for modeling interactions of small molecules with biomolecular targets. J Comput Chem 2011, 32, 893. <https://doi.org/10.1002/jcc.21671>
  • Schneebeli Severin T., Bochevarov Arteum D., Friesner Richard A.: Parameterization of a B3LYP Specific Correction for Noncovalent Interactions and Basis Set Superposition Error on a Gigantic Data Set of CCSD(T) Quality Noncovalent Interaction Energies. J. Chem. Theory Comput. 2011, 7, 658. <https://doi.org/10.1021/ct100651f>
  • Tafipolsky Maxim, Engels Bernd: Accurate Intermolecular Potentials with Physically Grounded Electrostatics. J. Chem. Theory Comput. 2011, 7, 1791. <https://doi.org/10.1021/ct200185h>
  • Řezáč Jan, Riley Kevin E., Hobza Pavel: S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures. J. Chem. Theory Comput. 2011, 7, 2427. <https://doi.org/10.1021/ct2002946>
  • Řezáč Jan, Riley Kevin E., Hobza Pavel: Extensions of the S66 Data Set: More Accurate Interaction Energies and Angular-Displaced Nonequilibrium Geometries. J. Chem. Theory Comput. 2011, 7, 3466. <https://doi.org/10.1021/ct200523a>
  • Steinmann Stephan N., Corminboeuf Clemence: Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. J. Chem. Theory Comput. 2011, 7, 3567. <https://doi.org/10.1021/ct200602x>
  • Riley Kevin E., Řezáč Jan, Hobza Pavel: MP2.X: a generalized MP2.5 method that produces improved binding energies with smaller basis sets. PCCP 2011, 13, 21121. <https://doi.org/10.1039/c1cp22525a>
  • Steber Amanda L., Neill Justin L., Zaleski Daniel P., Pate Brooks H., Lesarri Alberto, Bird Ryan G., Vaquero-Vara Vanesa, Pratt David W.: Structural studies of biomolecules in the gas phase by chirped-pulse Fourier transform microwave spectroscopy. Faraday Disc 2011, 150, 227. <https://doi.org/10.1039/c1fd00008j>
  • Hobza Pavel: The calculation of intermolecular interaction energies. Annu Rep Prog Chem Sect C 2011, 107, 148. <https://doi.org/10.1039/c1pc90005f>
  • Burns Lori A., Mayagoitia Álvaro Vázquez-, Sumpter Bobby G., Sherrill C. David: Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. The Journal of Chemical Physics 2011, 134. <https://doi.org/10.1063/1.3545971>
  • Andrinopoulos Lampros, Hine Nicholas D. M., Mostofi Arash A.: Calculating dispersion interactions using maximally localized Wannier functions. The Journal of Chemical Physics 2011, 135. <https://doi.org/10.1063/1.3647912>
  • Mazanetz Michael P, Ichihara Osamu, Law Richard J, Whittaker Mark: Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. J Cheminform 2011, 3. <https://doi.org/10.1186/1758-2946-3-2>
  • Adams Sam, de Castro Pablo, Echenique Pablo, Estrada Jorge, Hanwell Marcus D, Murray-Rust Peter, Sherwood Paul, Thomas Jens, Townsend Joe: The Quixote project: Collaborative and Open Quantum Chemistry data management in the Internet age. J Cheminform 2011, 3. <https://doi.org/10.1186/1758-2946-3-38>
  • Kolář Michal, Berka Karel, Jurečka Petr, Hobza Pavel: On the Reliability of the AMBER Force Field and its Empirical Dispersion Contribution for the Description of Noncovalent Complexes. ChemPhysChem 2010, 11, 2399. <https://doi.org/10.1002/cphc.201000109>
  • Kurisaki Ikuo, Fukuzawa Kaori, Nakano Tatsuya, Mochizuki Yuji, Watanabe Hirofumi, Tanaka Shigenori, Xia Wen Wen, Yao Li, Chen Baojiu, Wang Donglai, Zhao Caihong, Xin Guang, Hou Dongyan: Fragment molecular orbital (FMO) study on stabilization mechanism of neuro-oncological ventral antigen (NOVA)���RNA complex system. Journal of Molecular Structure: THEOCHEM 2010, 962, 45. <https://doi.org/10.1016/j.theochem.2010.09.013>
  • Szatyłowicz Halina, Sadlej-Sosnowska Nina: Characterizing the Strength of Individual Hydrogen Bonds in DNA Base Pairs. J. Chem. Inf. Model. 2010, 50, 2151. <https://doi.org/10.1021/ci100288h>
  • Steinmann Stephan N., Corminboeuf Clemence: A System-Dependent Density-Based Dispersion Correction. J. Chem. Theory Comput. 2010, 6, 1990. <https://doi.org/10.1021/ct1001494>
  • Gráfová Lucie, Pitoňák Michal, Řezáč Jan, Hobza Pavel: Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set. J. Chem. Theory Comput. 2010, 6, 2365. <https://doi.org/10.1021/ct1002253>
  • Podeszwa Rafał, Patkowski Konrad, Szalewicz Krzysztof: Improved interaction energy benchmarks for dimers of biological relevance. Phys. Chem. Chem. Phys. 2010, 12, 5974. <https://doi.org/10.1039/b926808a>
  • Watanabe Hirofumi, Tanaka Shigenori: Fragment Molecular Orbital Method: Application to Protein-Ligand Binding. Interdisciplinary Bio Central 2010, 2, 6.1. <https://doi.org/10.4051/ibc.2010.2.2.0006>
  • Pitoňák Michal, Neogrády Pavel, Černý Jiří, Grimme Stefan, Hobza Pavel: Scaled MP3 Non‐Covalent Interaction Energies Agree Closely with Accurate CCSD(T) Benchmark Data. ChemPhysChem 2009, 10, 282. <https://doi.org/10.1002/cphc.200800718>
  • Ran Jiong, Hobza Pavel: On the Nature of Bonding in Lone Pair···π-Electron Complexes: CCSD(T)/Complete Basis Set Limit Calculations. J. Chem. Theory Comput. 2009, 5, 1180. <https://doi.org/10.1021/ct900036y>
  • Řezáč Jan, Fanfrlík Jindřich, Salahub Dennis, Hobza Pavel: Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. J. Chem. Theory Comput. 2009, 5, 1749. <https://doi.org/10.1021/ct9000922>
  • Pitoňák M., Janowski T., Neogrády P., Pulay P., Hobza P.: Convergence of the CCSD(T) Correction Term for the Stacked Complex Methyl Adenine−Methyl Thymine: Comparison with Lower-Cost Alternatives. J. Chem. Theory Comput. 2009, 5, 1761. <https://doi.org/10.1021/ct900126q>
  • Valdes H., Pluhackova K., Hobza P.: Phenylalanyl-Glycyl-Phenylalanine Tripeptide: A Model System for Aromatic−Aromatic Side Chain Interactions in Proteins. J. Chem. Theory Comput. 2009, 5, 2248. <https://doi.org/10.1021/ct900174f>
  • Steinmann Stephan N., Csonka Gábor, Corminboeuf Clémence: Unified Inter- and Intramolecular Dispersion Correction Formula for Generalized Gradient Approximation Density Functional Theory. J. Chem. Theory Comput. 2009, 5, 2950. <https://doi.org/10.1021/ct9002509>