Collect. Czech. Chem. Commun. 2007, 72, 1158-1176
https://doi.org/10.1135/cccc20071158

Revision of the Dual-Substituent-Parameter Treatment; Reaction Series with a Donor Reaction Centre

Stanislav Böhma and Otto Exnerb,*

a Department of Organic Chemistry, Institute of Chemical Technology, Prague, CZ-166 28 Prague 6, Czech Republic
b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, CZ-166 10 Prague 6, Czech Republic

References

1. Ehrenson S., Brownlee R. T. C., Taft R. W.: Prog. Phys. Org. Chem. 1973, 10, 1. <https://doi.org/10.1002/9780470171899.ch1>
2. Hansch C., Leo A., Taft R. W.: Chem. Rev. 1991, 91, 165. <https://doi.org/10.1021/cr00002a004>
3. Charton M.: Prog. Phys. Org. Chem. 1981, 13, 119. <https://doi.org/10.1002/9780470171929.ch3>
4. Taft R. W., Topsom R. D.: Prog. Phys. Org. Chem. 1987, 16, 1. <https://doi.org/10.1002/9780470171950.ch1>
5. For instance: Craik D. J., Brownlee R. T. C.: Prog. Phys. Org. Chem. 1983, 14, 1. <https://doi.org/10.1002/9780470171936.ch1>
6. Wold S., Sjöström M. in: Correlation Analysis in Chemistry, Recent Advances (N. B. Chapman and J. Shorter, Eds), p. 1. Plenum Press, New York 1978.
7. Ludwig M., Wold S., Exner O.: Acta Chem. Scand. 1992, 46, 549. <https://doi.org/10.3891/acta.chem.scand.46-0549>
8a. Charton M.: Prog. Phys. Org. Chem. 1987, 16, 287. <https://doi.org/10.1002/9780470171950.ch6>
8b. Weeks G., Horák V.: J. Org. Chem. 1980, 45, 2068. <https://doi.org/10.1021/jo01299a005>
8c. Nieuwdorp G. H. E., de Ligny C. L., van Houwelingen H. C.: J. Chem. Soc., Perkin Trans. 2 1979, 537. <https://doi.org/10.1039/p29790000537>
9a. Bottino F. A., Musumarra G., Rappoport Z.: Magn. Reson. Chem. 1986, 24, 31. <https://doi.org/10.1002/mrc.1260240108>
9b. Clementi S., Fringuelli F., Linda P., Savelli G.: Gazz. Chim. Ital. 1975, 105, 281.
10. Exner O., Buděšínský M.: Magn. Reson. Chem. 1989, 27, 27. <https://doi.org/10.1002/mrc.1260270106>
11. Mager H.: Pharmazie 1983, 38, 120.
12a. Alunni S., Clementi S., Edlund U., Johnels D., Hellberg S., Sjöström M., Wold S.: Acta Chem. Scand., Ser. B 1983, 37, 47. <https://doi.org/10.3891/acta.chem.scand.37b-0047>
12b. Alunni S., Clementi S., Ebert C., Linda P., Musumarra G., Edlund U., Sjöström M., Wold S.: Gazz. Chim. Ital. 1986, 116, 679.
13a. Exner O.: Collect. Czech. Chem. Commun. 1966, 31, 65. <https://doi.org/10.1135/cccc19660065>
13b. Decouzon M., Exner O., Gal J.-F., Maria P.-C., Weisser K.: J. Phys. Org. Chem. 1994, 7, 511. <https://doi.org/10.1002/poc.610070907>
14a. Palm V. A.: Osnovy Kolichestvennoi Teorii Organicheskikh Reaktsii, Chap. IX-2. Khimiya, Leningrad 1967.
14b. Tsuno Y., Sawada M., Fujii T., Yukawa Y.: Bull. Chem. Soc. Jpn. 1979, 52, 3033. <https://doi.org/10.1246/bcsj.52.3033>
14c. Adcock W., Dewar M. J. S., Gupta B. D.: J. Am. Chem. Soc. 1973, 95, 7353. <https://doi.org/10.1021/ja00803a024>
14d. Vorpagel E. R., Streitwieser A., Jr., Alexandratos S. D.: J. Am. Chem. Soc. 1981, 103, 3777. <https://doi.org/10.1021/ja00403a027>
14e. Taagepera M., Summerhays K. D., Hehre W. J., Topsom R. D., Pross A., Radom L., Taft R. W.: J. Org. Chem. 1981, 46, 891. <https://doi.org/10.1021/jo00318a014>
15. Hoefnagel A. J., Oosterbeek W., Wepster B. M.: J. Org. Chem. 1984, 49, 1993. <https://doi.org/10.1021/jo00185a032>
16. Segurado M. A. P., Reis J. C. R., de Oliveira J. D. G.: J. Chem. Soc., Perkin Trans. 2 2002, 323. <https://doi.org/10.1039/b106418e>
17. Exner O.: J. Phys. Org. Chem. 1999, 12, 265. <https://doi.org/10.1002/(SICI)1099-1395(199904)12:4<265::AID-POC124>3.0.CO;2-O>
18a. Pross A., Radom L., Taft R. W.: J. Org. Chem. 1980, 45, 818. <https://doi.org/10.1021/jo01293a012>
18b. Exner O.: J. Org. Chem. 1988, 53, 1810. <https://doi.org/10.1021/jo00243a042>
18c. Exner O.: Org. Reactiv. (Tartu) 1995, 29, 1.
19. George P., Trachtman M., Bock C. W., Brett A. M.: J. Chem. Soc., Perkin Trans. 2 1976, 1222. <https://doi.org/10.1039/p29760001222>
20a. Wiberg K. B.: J. Org. Chem. 2002, 67, 1613. <https://doi.org/10.1021/jo011051x>
20b. Liu L., Fu Y., Liu R.,. Li R.-Q., Guo Q.-X.: J. Chem. Inf. Comput. Sci. 2004, 44, 652. <https://doi.org/10.1021/ci0342122>
21. Exner O., Böhm S.: Chem. Eur. J. 2002, 8, 5147. <https://doi.org/10.1002/1521-3765(20021115)8:22<5147::AID-CHEM5147>3.0.CO;2-T>
22. Exner O., Böhm S.: J. Phys. Org. Chem. 2004, 17, 124. <https://doi.org/10.1002/poc.701>
23. Exner O., Böhm S.: J. Phys. Org. Chem. 2006, 19, 393. <https://doi.org/10.1002/poc.1093>
24. Exner O., Böhm S.: J. Phys. Org. Chem. 2006, 19, 1. <https://doi.org/10.1002/poc.998>
25. Böhm S., Exner O.: J. Comput. Chem. 2006, 27, 571. <https://doi.org/10.1002/jcc.20368>
26a. Koppel I. A., Mishima M., Stock L. M., Taft R. W., Topsom R. D.: J. Phys. Org. Chem. 1993, 6, 685. <https://doi.org/10.1002/poc.610061205>
26b. Adcock W., Anvia F., Butt G., Cook A., Duggan P., Grob C. A., Marriott S., Rowe J., Taagepera M., Taft R. W., Topsom R. D.: J. Phys. Org. Chem. 1991, 4, 353. <https://doi.org/10.1002/poc.610040606>
27. Helal M. R.: J. Mol. Struct. (THEOCHEM) 2000, 528, 255. <https://doi.org/10.1016/S0166-1280(99)00500-X>
28. Böhm S., Exner O.: J. Mol. Struct. (THEOCHEM) 2005, 722, 125. <https://doi.org/10.1016/j.theochem.2004.11.053>
29. Exner O., Böhm S.: J. Phys. Org. Chem. 2007, 20, 454. <https://doi.org/10.1002/poc.1177>
30a. Becke A. D.: J. Chem. Phys. 1993, 98, 5648. <https://doi.org/10.1063/1.464913>
30b. Lee C. T., Yang W. T., Parr R. G.: Phys. Rev. B 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
31. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian-03, Revision B.03. Gaussian, Inc., Pittsburgh (PA) 2003.
32. Maria P.-C., Leito I., Gal J.-F., Exner O., Decouzon M.: Bull. Soc. Chim. Fr. 1995, 132, 394.
33. Wiberg K. B.: Collect. Czech. Chem. Commun. 2004, 69, 2183. <https://doi.org/10.1135/cccc20042183>
34. Wiberg K. B.: J. Org. Chem. 2002, 67, 4787. <https://doi.org/10.1021/jo020100i>
35. Exner O., Böhm S.: Phys. Chem. Chem. Phys. 2004, 6, 3864. <https://doi.org/10.1039/b404556d>
36. Liptak M. D., Gross K. C., Seybold P. G., Feldgus S., Shields G. C.: J. Am. Chem. Soc. 2002, 124, 6421. <https://doi.org/10.1021/ja012474j>
37. Wiberg K. J.: J. Org. Chem. 2003, 68, 875. <https://doi.org/10.1021/jo020560b>
38. Vianello R., Maksić Z. B.: Tetrahedron 2006, 62, 3402. <https://doi.org/10.1016/j.tet.2006.01.049>
39. Barbour J. B., Karty J. M.: J. Phys. Org. Chem. 2005, 18, 210. <https://doi.org/10.1002/poc.850>
40. Jaffé H. H.: Chem. Rev. 1953, 53, 191. <https://doi.org/10.1021/cr60165a003>
41. Exner O., Böhm S.: Collect. Czech. Chem. Commun. 2006, 71, 1239. <https://doi.org/10.1135/cccc20061239>
42. Exner O.: Collect. Czech. Chem. Commun. 1975, 40, 2781. <https://doi.org/10.1135/cccc19752781>
43a. Krygowski T. M., Anulewicz R., Hiberty P. C.: J. Org. Chem. 1996, 61, 8533. <https://doi.org/10.1021/jo960209o>
43b. Krygowski T. M., Cyrański M., Wisiorowski M.: Pol. J. Chem. 1996, 70, 1351.
44. Böhm S., Exner O.: J. Mol. Struct. (THEOCHEM) 2007, 803, 9. <https://doi.org/10.1016/j.theochem.2006.09.008>