Collect. Czech. Chem. Commun. 2007, 72, 1122-1138
https://doi.org/10.1135/cccc20071122

Gas-Phase Clustering of NO+ with H2S and H2O

Milan Uhlára and Ivan Černušákb,*

a Institute of Physics, Faculty of Art and Science, Silesian University, Bezručovo nám. 13, CZ-746 01 Opava 1, Czech Republic
b Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia

References

1. Wincel H.: Chem. Phys. Lett. 1998, 292, 193. <https://doi.org/10.1016/S0009-2614(98)00686-1>
2. Wincel H., Mereand E., Castleman J. A. W.: J. Phys. Chem. 1994, 98, 8606. <https://doi.org/10.1021/j100086a003>
3. Wincel H.: Int. J. Mass Spectrom. 2003, 226, 341. <https://doi.org/10.1016/S1387-3806(03)00066-6>
4. Wincel H.: Int. J. Mass Spectrom. 2000, 203, 93. <https://doi.org/10.1016/S1387-3806(00)00284-0>
5. Hiraoka K., Fujimaki S., Aruga K., Yamabe S.: J. Phys. Chem. 1994, 98, 8295. <https://doi.org/10.1021/j100085a006>
6. Hiraoka K., Yamabe S.: J. Chem. Phys. 1991, 95, 6800. <https://doi.org/10.1063/1.461518>
7. Manahan S. E.: Environmental Chemistry. CRC Press LLC, Boca Raton 1999.
8. Ye L., Cheng H.-P.: J. Chem. Phys. 1998, 108, 2011. <https://doi.org/10.1063/1.475580>
9. Viggiano A. A.: Phys. Chem. Chem. Phys. 2006, 8, 2557. <https://doi.org/10.1039/b603585j>
10. Fehsenfeld F. C., Ferguson E. E.: J. Geophys. Res., [Space Phys.] 1969, 74, 2217. <https://doi.org/10.1029/JA074i009p02217>
11. Thomas L.: Ann. Geophys. 1983, 1, 61.
12. Keese R. G., Castleman J. A. W.: Ann. Geophys. 1983, 1, 75.
13. Arijs E.: Ann. Geophys. 1983, 1, 149.
14. Arijs E.: Planet. Space Sci. 1992, 40, 255. <https://doi.org/10.1016/0032-0633(92)90064-U>
15. Firanescu G., Hermsdorf D., Ueberschaer R., Signorell R.: Phys. Chem. Chem. Phys. 2006, 8, 4149. <https://doi.org/10.1039/b608433h>
16. Hammam E., Lee E. P. F., Dyke J. M.: J. Phys. Chem. A 2000, 104, 4571. <https://doi.org/10.1021/jp994278t>
17. Hammam E., Lee E. P. F., Dyke J. M.: J. Phys. Chem. A 2001, 105, 5528. <https://doi.org/10.1021/jp003847q>
18. Lee E. P. F., Dyke J. M.: Mol. Phys. 1991, 73, 375. <https://doi.org/10.1080/00268979100101261>
19. Choi J.-H., Kuwata K. T., Haas B.-M., Cao Y., Johnson M. S., Okumura M.: J. Chem. Phys. 1994, 100, 7153. <https://doi.org/10.1063/1.466914>
20. Mack P.: Chem. Phys. 1997, 218, 243. <https://doi.org/10.1016/S0301-0104(97)00080-3>
21. Dunkin D. B., Fehsenfeld F. C., Schmeltekopf E. E., Ferguson E. E.: J. Chem. Phys. 1971, 54, 3817. <https://doi.org/10.1063/1.1675432>
22. Fehsenfeld F. C., Ferguson E. E.: J. Geophys. Res., [Space Phys.] 1969, 74, 5743. <https://doi.org/10.1029/JA074i009p02217>
23. Lineberger W. C., Puckett L. J.: Phys. Rev. 1969, 187, 286. <https://doi.org/10.1103/PhysRev.187.286>
24. French M. A., Hills P. L., Kebarle P.: Can. J. Chem. 1973, 51, 456. <https://doi.org/10.1139/v73-068>
25. Brasseur G., Chatel A.: Ann. Geophys. 1983, 1, 173.
26. Nonoella M., Huber J. R., Ha T.-K.: J. Phys. Chem. 1987, 91, 5203. <https://doi.org/10.1021/j100304a014>
27. Uhlár M., Pitonak M., Černušák I.: Mol. Phys. 2005, 103, 2309. <https://doi.org/10.1080/00268970500174322>
28. Lee C., Yang W., Parr R. G.: Phys. Rev. B 1988, 37, 785. <https://doi.org/10.1103/PhysRevB.37.785>
29. Becke A. D.: Phys. Rev. A 1988, 38, 3098. <https://doi.org/10.1103/PhysRevA.38.3098>
30. Bartlett R. J., Stanton J. F. in: Reviews in Computational Chemistry (K. B. Lipkowitz and D. B. Boyd, Eds), Vol. 5, p. 65. VCH Publishers, Inc., New York 1994.
31. Woon D. E., Dunning T. H., Jr.: J. Chem. Phys. 1994, 100, 2975. <https://doi.org/10.1063/1.466439>
32. Urban M., Noga J., Cole S. J., Bartlett R. J.: J. Chem. Phys. 1985, 83, 4041. <https://doi.org/10.1063/1.449067>
33. Bartlett R. J., Watts J. D., Kucharski S. A., Noga J.: Chem. Phys. Lett. 1990, 165, 513. <https://doi.org/10.1016/0009-2614(90)87031-L>
34. Boys S. F., Bernardi F.: Mol. Phys. 1970, 19, 553. <https://doi.org/10.1080/00268977000101561>
35. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, revision B.04. Gaussian Inc., Pittsburg (PA) 2003.
36. Stanton J. F., Gauss J., Watts J. D., Nooijen M., Oliphant N., Perera S. A., Szalay P. G., Lauderdale W. J., Kucharski S. A., Gwaltney S. R., Beck S., Balkova A., Bernholdt D. E., Baeck K. K., Rozyczko P., Sekino H., Hober C., Bartlett R. J.: ACES II is a program product of the Quantum Theory Project, University of Florida. Integral packages included are VMOL (J. Almlöf and P. R. Taylor), VPROPS (P. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen and P. R. Taylor) 2005.
37. Schaftenaar G., Noordik J. H.: J. Comput.-Aided Mol. Des. 2000, 14, 123. <https://doi.org/10.1023/A:1008193805436>