Collect. Czech. Chem. Commun.
2007, 72, 703-714
https://doi.org/10.1135/cccc20070703
Remote Metal-Arene π Bonding in Organometallic Complexes: a DFT Study
Paulo J. Costaa, Maria José Calhordaa,* and Paul S. Pregosinb
a Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
b Laboratorium für Anorganische Chemie, ETHZ, Hönggerberg, 8093 Zürich, Switzerland
References
1. J. Am. Chem. Soc. 1984, 106, 2990.
< C. B., Marder T. B., Mizusawa E. A., Teller R. G., Long J. A., Behnken P. E., Hawthorne M. F.: https://doi.org/10.1021/ja00322a040>
2. Chem. Commun. 1999, 1629.
< T.-Y., Szalda D. J., Bullock R. M.: https://doi.org/10.1039/a905092b>
3. J. Am. Chem. Soc. 1996, 118, 6908.
< C. D., Bergman R. G.: https://doi.org/10.1021/ja953711j>
4a. J. Chem. Soc., Dalton Trans. 1995, 49.
< A., Tschumper A., Consiglio G.: https://doi.org/10.1039/dt9950000049>
4b. J. Organomet. Chem. 1995, 502, 47.
< C., Kaufmann D., Gessler S., Harms K.: https://doi.org/10.1016/0022-328X(95)05687-K>
5. J. Organomet. Chem. 1994, 479, 237.
< D. D., Adams H., Bailey N. A., King P. J., White C.: https://doi.org/10.1016/0022-328X(94)84115-2>
6. Organometallics 1997, 16, 5756.
< N., Pregosin P. S., Trabesinger G.: https://doi.org/10.1021/om9707275>
7a. Organometallics 2002, 21, 4672.
< P. W., Rettig S. J., Patrick O. B., James B. R.: https://doi.org/10.1021/om0205344>
7b. Organometallics 2002, 21, 628.
< H., Jiménez-Tenorio M., Puerta M. C., Valerga P., Mereiter K.: https://doi.org/10.1021/om010730v>
8a. J. Am. Chem. Soc. 2002, 124, 1162.
< J., Rainka M. P., Zhang X.-X., Buchwald S. L.: https://doi.org/10.1021/ja017082r>
8b. Inorg. Chim. Acta 2006, 359, 962.
< T. J., Pregosin P. S., Rizzato S., Albinati A.: https://doi.org/10.1016/j.ica.2005.06.072>
9a. Chem. Eur. J. 1999, 5, 1452.
< G. B., Forsyth C. M., Junk P. C., Skelton B. W., White A. H.: https://doi.org/10.1002/(SICI)1521-3765(19990503)5:5<1452::AID-CHEM1452>3.0.CO;2-8>
9b. Aust. J. Chem. 1995, 48, 741.
< G. B., Feng T., Skelton B. W., White A. H.: https://doi.org/10.1071/CH9950741>
9c. Aust. J. Chem. 1990, 43, 1245.
< G. B., Nickel S., MacKinnon P., Tiekink: https://doi.org/10.1071/CH9901245>
10a. Acc. Chem. Res. 2000, 33, 354.
< T. J.: https://doi.org/10.1021/ar990080f>
10b. Eur. J. Inorg. Chem. 2002, 1907.
< T. J., Pregosin P. S.: https://doi.org/10.1002/1099-0682(200208)2002:8<1907::AID-EJIC1907>3.0.CO;2-K>
11. Organometallics 2004, 23, 5606.
< M., Franciò G., Leitner W.: https://doi.org/10.1021/om040107l>
12. Novak A., Fryatt R., Woodward S.: C. R. Chim. 2007, in press;
<https://doi.org/10.1016/j.crci.2006.10.008>
13. Inorg. Chem. 2006, 45, 1888.
< Q.-S., Wan C.-Q., Zou R.-Y., Xu F.-B., Song H.-B., Wan X.-J., Zhang Z.-Z.: https://doi.org/10.1021/ic051869r>
14. Inorg. Chem. 1970, 9, 440.
< K. W., Ibers J. A.: https://doi.org/10.1021/ic50085a003>
15. J. Organomet. Chem. 1983, 250, 395.
M. L. H., Brookhart M.:
16. Parr R. G., Yang W.: Density Functional Theory of Atoms and Molecules. Oxford University Press, New York 1989.
17a. ADF2004.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands; http://www.scm.com.
17b. J. Comput. Chem. 2001, 22, 931.
< G., Bickelhaupt F. M., van Gisbergen S. J. A., Guerra C. F., Baerends E. J., Snijders J. G., Ziegler T.: https://doi.org/10.1002/jcc.1056>
17c. Theor. Chem. Acc. 1998, 99, 391.
< C. F., Snijders J. G., te Velde G., Baerends E. J.: https://doi.org/10.1007/s002140050021>
18. Can. J. Phys. 1980, 58, 1200.
< S. H., Wilk L., Nusair M.: https://doi.org/10.1139/p80-159>
19a. J. Chem. Phys. 1988, 88, 322.
< L., Ziegler T.: https://doi.org/10.1063/1.454603>
19b. J. Chem. Phys. 1991, 95, 7401.
< L., Ziegler T.: https://doi.org/10.1063/1.461366>
20. Phys. Rev. B 1992, 46, 6671.
< J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C.: https://doi.org/10.1103/PhysRevB.46.6671>
21. J. Chem. Phys. 1999, 110, 8943.
< E., Ehlers A., Baerends E. J.: https://doi.org/10.1063/1.478813>
22a. Chem. Phys. Lett. 1983, 97, 270.
< I.: https://doi.org/10.1016/0009-2614(83)80005-0>
22b. Int. J. Quantum Chem. 1984, 26, 151.
< I.: https://doi.org/10.1002/qua.560260111>
23. Tetrahedron 1968, 24, 1083.
< K. B.: https://doi.org/10.1016/0040-4020(68)88057-3>
24a. Carpenter J. E.: Ph.D. Thesis. University of Wisconsin, Madison (WI) 1987.
24b. J. Mol. Struct. 1988, 169, 41.
< J. E., Weinhold F.: https://doi.org/10.1016/0166-1280(88)80248-3>
24c. J. Am. Chem. Soc. 1980, 102, 7211.
< J. P., Weinhold F.: https://doi.org/10.1021/ja00544a007>
24d. J. Chem. Phys. 1983, 78, 4066.
< A. E., Weinhold F.: https://doi.org/10.1063/1.445134>
24e. J. Chem. Phys. 1985, 83, 1736.
< A. E., Weinhold F.: https://doi.org/10.1063/1.449360>
24f. J. Chem. Phys. 1985, 83, 735.
< A. E., Weinstock R. B., Weinhold F.: https://doi.org/10.1063/1.449486>
24g. Chem. Rev. 1988, 88, 899.
< A. E., Curtiss L. A., Weinhold F.: https://doi.org/10.1021/cr00088a005>
24h. Weinhold F., Carpenter J. E.: The Structure of Small Molecules and Ions. Plenum Press, New York 1988.
25. Glendening E. D., Badenhoop J. K., Reed A. E., Carpenter J. E., Bohmann J. A., Morales C. M., Weinhold F.: NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, Madison (WI) 2001.
26a. Theor. Chim. Acta 1977, 46, 1.
< T., Rauk A.: https://doi.org/10.1007/BF02401406>
26b. Inorg. Chem. 1979, 18, 1558.
< T., Rauk A.: https://doi.org/10.1021/ic50196a034>
26c. Inorg. Chem. 1979, 18, 1755.
< T., Rauk A.: https://doi.org/10.1021/ic50197a006>