Collect. Czech. Chem. Commun. 2007, 72, 589-598

Metal Chloride Reductions with Aromatic Radical Anions. The Magnesium Chloride Catalysed Cleavage of Tetrahydrofuran by Sodium Naphthalene Radical Anion

Barry R. Steele*, Georgios A. Heropoulos and Constantinos G. Screttas

Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece


1. Fürstner A. (Ed.): Active Metals. Preparation, Characterization, Applications. VCH, Weinheim 1996.
2a. Kündig E. P., Perret C.: Helv. Chim. Acta 1981, 64, 2606. <>
2b. Klabunde K. J., Efner H. F., Satek L., Donley W.: J. Organomet. Chem. 1974, 71, 309. <>
2c. Oppolzer W., Kündig E. P., Bishop P. M., Perret C.: Tetrahedron Lett. 1982, 23, 3901. <>
3. Bogdanovic B.: Angew. Chem., Int. Ed. Engl. 1985, 24, 262. <>
4. Baker K. V., Brown J. M., Hughes N., Skarnulis A. J., Sexton A.: J. Org. Chem. 1991, 56, 698. <>
5a. Rieke R. D., Hudnall P. M.: J. Am. Chem. Soc. 1972, 94, 7178. <>
5b. Rieke R. D., Bales S. E.: J. Chem. Soc., Chem. Commun. 1973, 879. <>
5c. Rieke R. D., Bales S. E.: J. Am. Chem. Soc. 1974, 96, 1775. <>
5d. Rieke R. D., Li P. T.-J., Burns T. P., Uhm S. T.: J. Org. Chem. 1981, 46, 4323. <>
5e. Zhang Y. K., Liao S. J., Fan Y. H., Xu J., Wang F. D.: J. Nanopart. Res. 2001, 3, 23. <>
5f. Peralez E., Negrel J. C., Goursot A., Chanon M.: Main Group Met. Chem. 1998, 21, 69. <>
6a. Rieke R. D.: Acc. Chem. Res. 1977, 10, 301. <>
6b. Rieke R. D.: Aldrichim. Acta 2000, 33, 52.
7. Rieke R. D.: Science 1989, 246, 1260. <>
8a. Screttas C. G., Micha-Screttas M.: J. Org. Chem. 1981, 46, 993. <>
8b. Screttas C. G., Micha-Screttas M.: J. Org. Chem. 1983, 48, 153. <>
9a. Screttas C. G., Ioannou G. I., Micha-Screttas M.: J. Organomet. Chem. 1996, 511, 217. <>
9b. Micha-Screttas M., Heropoulos G. A., Steele B. R.: J. Chem. Soc., Perkin Trans. 2 1999, 1443. <>
10. Steele B. R., Heropoulos G. A., Screttas C. G.: Unpublished results. For example, for the titration of CrCl3 with lithium naphthalene radical anion in THF performed in the same way as descibed in the Experimental of this paper, we found an end-point corresponding to a six-electron reduction. Similar apparently multi-electron reductions were found for Li2MnCl4 (5e), Li2CuCl4 (2 endpoints corresponding to 4e and __MATH__ reductions), Li2ZnCl4 (4e), SbCl3 (6e), HgCl2 (4e) and BiCl3 (8e).
11. Screttas C. G., Micha-Screttas M.: J. Org. Chem. 1983, 48, 252. <>
12a. Bartlett P. D., Friedman S., Stiles M.: J. Am. Chem. Soc. 1953, 75, 1771. <>
12b. for a review see Maercker A.: Angew. Chem., Int. Ed. Engl. 1987, 26, 972. <>
13. Freijee F., Schat G., Mierop R., Blomberg C., Bickelhaupt F.: Heterocycles 1977, 7, 237.
14. The actual “room temperature” was found to be rather critical for this reaction to be successful. At ambient temperatures less than ca. 20 °C, the addition produced a grey precipitate as observed for the slow addition. A temperature of ca. 25 °C, however, was found to give satisfactory results.
15. Wakefield B. J.: The Chemistry of Organolithium Compounds. Pergamon Press, Oxford 1974.
16. Screttas C. G., Micha-Screttas M.: J. Organomet. Chem. 1985, 290, 1. <>