Collect. Czech. Chem. Commun.
2007, 72, 527-540
https://doi.org/10.1135/cccc20070527
Synthesis and Characterization of Ni(II) and Pd(II) Complexes Bearing Achiral and Chiral Bidentate Aminophosphine Ligands
David Benito-Garagorria, Kurt Mereiterb and Karl Kirchnera,*
a Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
b Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
References
1a. Chem. Rev. 1993, 93, 2067.
< G. R.: https://doi.org/10.1021/cr00022a006>
1b. Coord. Chem. Rev. 1996, 147, 1.
< Z. Z., Cheng H.: https://doi.org/10.1016/0010-8545(94)01112-5>
1c. Coord. Chem. Rev. 1999, 193–195, 499.
< P., Soulantica K.: https://doi.org/10.1016/S0010-8545(99)00140-X>
2a. Z. Anorg. Allg. Chem. 1968, 359, 67.
< E., Schäfer M.: https://doi.org/10.1002/zaac.19683590109>
2b. Inorg. Chim. Acta 1973, 7, 713.
< W. J., Angelici R. J.: https://doi.org/10.1016/S0020-1693(00)94915-6>
2c. Z. Anorg. Allg. Chem. 1989, 577, 74.
< H. T., Hahn G.: https://doi.org/10.1002/zaac.19895770108>
3a. J. Chem. Soc., Dalton Trans. 1994, 2755.
< M., Lugan N., Mathieu R. : https://doi.org/10.1039/dt9940002755>
3b. J. Chem. Soc., Chem. Commun. 1995, 1721.
< H., Alvarez M., Lugan N., Mathieu R.: https://doi.org/10.1039/c39950001721>
4a. J. Chem. Soc. A 1971, 3495.
< W. V., Dick T. R., Ford G. H., Kelly W. S. J., Nelson M. S.: https://doi.org/10.1039/j19710003495>
4b. Inorg. Chem. 1983, 22, 3267.
< M. P., Bruce C. T., Mattson B. M., Pignolet L. H.: https://doi.org/10.1021/ic00164a020>
4c. Inorg. Chem. 1985, 24, 1935.
< R. J., Nilsson P. V., Pignolet L. H.: https://doi.org/10.1021/ic00206a048>
4d. Inorg. Chem. 1983, 22, 2644.
< M. P., Mattson B. M., Pignolet L. H.: https://doi.org/10.1021/ic00160a037>
5a. Z. Anorg. Allg. Chem. 1966, 334, 20515.
E., Maaser M.:
5b. Inorg. Chem. 1975, 14, 1491.
< P., Bressan M.: https://doi.org/10.1021/ic50149a010>
5c. Inorg. Chem. 1988, 27, 1649.
< M. P., Casalnuovo A. L., Johnson B. J., Mattson B. M., Mueting A. M., Pignolet L. H.: https://doi.org/10.1021/ic00282a029>
5d. Inorg. Chem. 1988, 27, 325.
< H. H., Casalnuovo A. L., Johnson B. J., Mueting A. M., Pignolet L. H.: https://doi.org/10.1021/ic00275a020>
5e. J. Chem. Soc., Dalton Trans. 1993, 3001.
< L., Zotto A. D., Mezzetti A., Zangrando E., Rigo P.: https://doi.org/10.1039/dt9930003001>
5f. J. Chem. Soc., Dalton Trans. 1995, 3343.
< A. D., Nardin G., Rigo P.: https://doi.org/10.1039/dt9950003343>
5g. Inorg. Chem. 1997, 36, 5251.
< J. A., Espinet P., Soulantica K.: https://doi.org/10.1021/ic970745e>
5h. Inorg. Chem. 2000, 39, 705.
< M. A., Casares J. A., Espinet P., Soulantica K., Charmant J. P. H., Orpen A. G.: https://doi.org/10.1021/ic990634a>
5i. Tetrahedron 2001, 42, 5697.
< M. A., Casares J. A., Espinet P., Valles E., Soulantica K.: https://doi.org/10.1016/S0040-4039(01)01086-3>
6a. Z. Chem. 1967, 11, 431.
W., Scholer H.:
6b. Z. Anorg. Allg. Chem. 1987, 545, 83.
< W., Flörke U., Haupt H. J.: https://doi.org/10.1002/zaac.19875450210>
6c. Z. Anorg. Allg. Chem. 1989, 574, 239.
< W., Flörke U., Haupt H. J.: https://doi.org/10.1002/zaac.655740127>
6d. Chem. Ber. 1985, 118, 3380.
< H., Weber H.: https://doi.org/10.1002/cber.19851180835>
6e. J. Chem. Soc., Dalton Trans. 2000, 2559.
< S. M., Slawin A. M. Z., Woolins J. D.: https://doi.org/10.1039/b003294h>
7a. Organometallics 2006, 25, 1900.
< D., Becker E., Wiedermann J., Lackner W., Pollak M., Mereiter K., Kisala J., Kirchner K.: https://doi.org/10.1021/om0600644>
7b. Organometallics 2006, 25, 3817.
< D., Bocokic V., Mereiter K., Kirchner K.: https://doi.org/10.1021/om060289e>
8a. Organometallics 2004, 23, 2625.
< F., Braunstein P., Saussine L.: https://doi.org/10.1021/om034198i>
8b. Organometallics 2004, 23, 2633.
< F., Braunstein P., Saussine L.: https://doi.org/10.1021/om034203i>
8c. Acc. Chem. Res. 2005, 38, 784.
< F., Braunstein P., Saussine L.: https://doi.org/10.1021/ar050040d>
9. Angew. Chem., Int. Ed. Engl. 1993, 32, 907.
< T., Peters W., Wunderlich H., Kuchen W.: https://doi.org/10.1002/anie.199309071>
10. Inorg. Chem. 2005, 44, 3636.
< S., Neese F., Bothe E., Bill E., Weyhermüller T., Wieghardt K.: https://doi.org/10.1021/ic040117e>
11. Organometallics 2004, 23, 2613.
< F., Braunstein P., Saussine L., Welter R.: https://doi.org/10.1021/om034197q>
12a. Chem. Rev. 1989, 89, 257.
< G., Waymouth R. M.: https://doi.org/10.1021/cr00091a007>
12b. Pure Appl. Chem. 1989, 61, 1673.
< J.: https://doi.org/10.1351/pac198961101673>
12c. Chem. Rev. 1996, 96, 395.
< B. M., van Vranken D. L.: https://doi.org/10.1021/cr9409804>
12d. Adv. Asym. Synth. 1996, 299.
< J. M. J.: https://doi.org/10.1007/978-94-007-0797-9_15>
12e. Acc. Chem. Res. 2000, 33, 336.
< G., Pfalz A.: https://doi.org/10.1021/ar9900865>
13. Organometallics 2001, 20, 2966.
< P., Naud F., Dedieu A., Rohmer M.-M., DeCian A., Rettig S. J.: https://doi.org/10.1021/om010165w>
14a. Dalton Trans. 2003, 507.
< P., Zhang J., Welter R.: https://doi.org/10.1039/b212393m>
14b. Inorg. Chem. 2004, 43, 4172.
< J., Braunstein P., Welter R.: https://doi.org/10.1021/ic035479l>
15a. Russ. Chem. Bull., Int. Ed. 2004, 53, 814.
< V. N., Kabro A. A., Moieseev S. K., Kalinin V. N., Bondarev O. G., Davankov V. A., Gavrilov K. N.: https://doi.org/10.1023/B:RUCB.0000037848.27038.f8>
15b. Organometallics 1996, 15, 835.
< A., Kamer P. C. J., van Leeuwen P. W. N. M., Goubitz K., Fraanje J., Veldman N., Spek A.: https://doi.org/10.1021/om950549k>
16. Tetrahedron: Asymmetry 1998, 9, 329.
< R., Heller D., Selke R.: https://doi.org/10.1016/S0957-4166(97)00622-8>
17. Inorg. Synth. 1990, 28, 346.
< D., Doyle J. R.: https://doi.org/10.1002/9780470132593.ch89>
18. Inorg. Synth. 1972, 13, 154.
< L. G. L.: https://doi.org/10.1002/9780470132449.ch30>
19. Bruker programs: SMART, version 5.625; SAINT, version 6.54; SADABS, version 2.10; SHELXTL, version 6.1. Bruker AXS Inc., Madison (WI) 2003.
20. Sheldrick G. M.: SHELX97, Program System for Crystal Structure Determination. University of Göttingen, Göttingen 1997.
21. Spek A. L.: PLATON, A Multipurpose Crystallographic Tool. University of Utrecht, Utrecht 2003.
22. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A.: Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford (CT) 2004.
23a. J. Chem. Phys. 1993, 98, 5648.
< A. D.: https://doi.org/10.1063/1.464913>
23b. Chem. Phys. Lett. 1989, 157, 200.
< B., Savin A., Stoll H., Preuss H.: https://doi.org/10.1016/0009-2614(89)87234-3>
23c. Phys. Rev. B: Condens. Matter 1988, 37, 785.
< C., Yang W., Parr G.: https://doi.org/10.1103/PhysRevB.37.785>
24a. Mol. Phys. 1993, 78, 1211.
< U., Dolg M., Stoll H., Preuss H.: https://doi.org/10.1080/00268979300100801>
24b. J. Chem. Phys. 1994, 100, 7535.
< W., Dolg M., Stoll H., Preuss H.: https://doi.org/10.1063/1.466847>
24c. J. Chem. Phys. 1996, 105, 1052.
< T., Nicklass A., Stoll H., Dolg M., Schwerdtfeger P.: https://doi.org/10.1063/1.471950>
25a. J. Chem. Phys. 1980, 72, 5639.
< A. D., Chandler G. S.: https://doi.org/10.1063/1.438980>
25b. J. Chem. Phys. 1980, 72, 650.
< R., Binkley J. S., Seeger R., Pople J. A.: https://doi.org/10.1063/1.438955>
25c. Chem. Phys. 1970, 52, 1033.
A. J. H.:
25d. J. Chem. Phys. 1977, 66, 4377.
< P. J.: https://doi.org/10.1063/1.433731>
25e. J. Chem. Phys. 1989, 91, 1062.
< K., Trucks G. W.: https://doi.org/10.1063/1.457230>
25f. J. Comput. Chem. 1995, 103, 6104.
R. C., Curtiss L. A.:
25g. J. Chem. Phys. 1991, 94, 511.
< M. P., Radom L.: https://doi.org/10.1063/1.460367>
26a. Chem. Phys. 1981, 55, 117.
< S., Scrocco E., Tomasi J.: https://doi.org/10.1016/0301-0104(81)85090-2>
26b. J. Comput. Chem. 1987, 8, 778.
< J. L., Silla E., Tomasi J., Bonaccorsi R.: https://doi.org/10.1002/jcc.540080605>
26c. J. Comput. Chem. 1989, 10, 616.
< F., Tomasi J.: https://doi.org/10.1002/jcc.540100504>
26d. Chem. Rev. 1994, 94, 2027.
< J., Persico M.: https://doi.org/10.1021/cr00031a013>