Collect. Czech. Chem. Commun. 2007, 72, 321-333
https://doi.org/10.1135/cccc20070321

Syntheses and Characterisation of Gd3Al5O12 and La3Al5O12 Garnets

Edita Garskaitea, Natalija Dubnikovaa, Arturas Katelnikovasa, Jiří Pinkasb and Aivaras Kareivaa,*

a Department of General and Inorganic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
b Department of Inorganic Chemistry, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic

References

1. Lu C. H., Hsu W. T., Dhanaraj J., Jagannathan R.: J. Eur. Ceram. Soc. 2004, 24, 3723. <https://doi.org/10.1016/j.jeurceramsoc.2003.12.009>
2. Batentschuk M., Osvet A., Schierning G., Klier A., Schneider J., Winnacker A.: Radiat. Meas. 2004, 38, 539. <https://doi.org/10.1016/j.radmeas.2003.12.009>
3. Yen W. M.: Opt. Mater. 2005, 27, 1647. <https://doi.org/10.1016/j.optmat.2004.10.023>
4. Pari G., Mookerjee A., Bhattacharya A. K.: Physica B (Amsterdam) 2005, 365, 163. <https://doi.org/10.1016/j.physb.2005.05.011>
5. Vaqueiro P., Lopez-Quintela M. A.: J. Mater. Chem. 1998, 8, 161. <https://doi.org/10.1039/a705635d>
6. Ganschow S., Klimm D., Reiche P., Uecker R.: Cryst. Res. Technol. 1999, 34, 615. <https://doi.org/10.1002/(SICI)1521-4079(199906)34:5/6<615::AID-CRAT615>3.0.CO;2-C>
7. Kang Y. C., Lenggoro I. W., Park S. B., Okuyama K.: J. Phys. Chem. Solids 1999, 60, 1855. <https://doi.org/10.1016/S0022-3697(99)00191-2>
8. Lu J., Prabhu M., Song J., Li C., Xu J., Ueda K., Kaminskii A. A., Yagi H., Yanagitani T.: Appl. Phys. B: Lasers Opt. 2000, 71, 469. <https://doi.org/10.1007/s003400000394>
9. Zhou S., Fu Z., Zhang J., Zhang S.: J. Luminecence 2006, 118, 179. <https://doi.org/10.1016/j.jlumin.2005.08.011>
10. Iida Y., Towata A., Tsugoshi T., Furukawa M.: Vib. Spectrosc. 1999, 19, 399. <https://doi.org/10.1016/S0924-2031(98)00051-4>
11. Golubovic A., Nikolic S., Gajic R., Duric S., Valcic A.: J. Serb. Chem. Soc. 2002, 67, 291. <https://doi.org/10.2298/JSC0204291G>
12. Vosegaard T., Massiot D., Gautier N., Jakobsen H. J.: Inorg. Chem. 1997, 36, 2446. <https://doi.org/10.1021/ic970012u>
13. Ferrand B., Chambaz B., Couchaud M.: Opt. Mater. 1999, 11, 101. <https://doi.org/10.1016/S0925-3467(98)00037-8>
14. Gaume R., Viana B., Derouet J., Vivien D.: Opt. Mater. 2003, 22, 107. <https://doi.org/10.1016/S0925-3467(02)00354-3>
15. Muliuoliene I., Mathur S., Jasaitis D., Shen H., Sivakov V., Rapalaviciute R., Beganskiene A., Kareiva A.: Opt. Mater. 2003, 22, 241. <https://doi.org/10.1016/S0925-3467(02)00271-9>
16. Garskaite E., Moravec Z., Pinkas J., Mathur S., Kazlauskas R., Kareiva A.: Philos. Mag. Lett. 2005, 85, 557. <https://doi.org/10.1080/09500830500398389>
17. Harlan J., Kareiva A., MacQueen D. B., Cook R., Barron A. R.: Adv. Mater. 1997, 9, 68. <https://doi.org/10.1002/adma.19970090116>
18. Lu C. H., Hong H. C., Jagannathan R.: J. Mater. Chem. 2002, 12, 2525. <https://doi.org/10.1039/b200776m>
19. Hreniak D., Strek W.: J. Alloys Compd. 2002, 341, 183. <https://doi.org/10.1016/S0925-8388(02)00067-1>
20. Zhou Y., Lin J., Yu M., Wang S., Zhang H.: Mater. Lett. 2002, 56, 628. <https://doi.org/10.1016/S0167-577X(02)00567-0>
21. Pan Y., Wu M., Su Q.: J. Phys. Chem. Solids 2004, 65, 845. <https://doi.org/10.1016/j.jpcs.2003.08.018>
22. Hreniak D., Strek W., Mazur P., Pazik R., Zabkowska-Waclawek M.: Opt. Mater. 2004, 26, 117. <https://doi.org/10.1016/j.optmat.2003.11.008>
23. Kasuya R., Isobe T., Kuma H.: J. Alloys Compd. 2006, 408–412, 820. <https://doi.org/10.1016/j.jallcom.2005.01.066>
24. Veith M., Mathur S., Kareiva A., Jilavi M., Zimmer M., Huch V.: J. Mater. Chem. 1999, 9, 3069. <https://doi.org/10.1039/a903664d>
25. Pan Y., Wu M., Su Q.: Mater. Sci. Eng., B 2004, 106, 251. <https://doi.org/10.1016/j.mseb.2003.09.031>
26. Potdevin A., Chadeyron G., Boyer D., Mahiou R.: J. Mater. Sci. 2006, 41, 2201. <https://doi.org/10.1007/s10853-006-7182-7>
27. Coates J. in: Encyclopedia of Analytical Chemistry (R. A. Meyers, Ed.). John Wiley & Sons Ltd., Chichester 2000.
28. Schrader B.: Infrared and Raman Spectroscopy. Methods and Applications. VCH, Weinheim 1995.
29. Higson S. P. J.: Analytical Chemistry. Oxford University Press, Oxford 2003.
30. Harding S. E., Chowdhry B.: Protein–Ligand Interactions: A Practical Approach: Structure and Spectroscopy. Oxford University Press, Oxford 2001.
31. McAloon B. P., Hofmeister A. M.: Am. Mineral. 1993, 78, 957.
32. Vaqueiro P., Lopez-Quintela M. A.: Chem. Mater. 1997, 9, 2836. <https://doi.org/10.1021/cm970165f>
33. Leleckaite A., Kareiva A., Bettentrup H., Jüstel T., Meyer H.-J.: Z. Anorg. Allg. Chem. 2005, 631, 2987. <https://doi.org/10.1002/zaac.200500315>
34. Wang S., Akatsu T., Tanabe Y., Yasuda E.: J. Eur. Ceram. Soc. 2000, 20, 39. <https://doi.org/10.1016/S0955-2219(99)00073-4>
35. Mathur S., Veith M., Shen H., Lecerf N., Hufner S.: Scr. Mater. 2001, 44, 2105. <https://doi.org/10.1016/S1359-6462(01)00883-1>
36. Mitra N. K., Das S., Maitra S., Sengupta U., Basumajumdar A.: Ceram. Int. 2002, 28, 827. <https://doi.org/10.1016/S0272-8842(02)00029-9>