Collect. Czech. Chem. Commun. 2007, 72, 164-170
https://doi.org/10.1135/cccc20070164

A Note About the Ground State of the Hydrogen Molecule

Alexander V. Turbiner* and Nicolais L. Guevara

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México, D.F., México

References

1. James H. M., Coolidge A. S.: J. Chem. Phys. 1933, 1, 825. <https://doi.org/10.1063/1.1749252>
2. Sims J. S., Hangstrom S. A.: J. Chem. Phys. 2006, 124, 094101. <https://doi.org/10.1063/1.2173250>
3. Bressanini D., Mella M., Morosi G.: Chem. Phys. Lett. 1995, 240, 566. <https://doi.org/10.1016/0009-2614(95)00561-H>
4. Ten-no S.: Chem. Phys. Lett. 2004, 398, 56. <https://doi.org/10.1016/j.cplett.2004.09.041>
5. Manby F. R., Werner H.-J., Adler T. B., May A. J.: J. Chem. Phys. 2006, 124, 094103. <https://doi.org/10.1063/1.2173247>
6. Klopper W., Manby F. R., Ten-No S., Valeev E. F.: Int. Rev. Phys. Chem. 2006, 25, 427. <https://doi.org/10.1080/01442350600799921>
7. It is worth noting that any method based on the Gaussian in r12 factor (or a superposition of the Gaussian functions as a factor) has an evident drawback – by construction the cusp parameter __MATH__ is always zero (see, e.g., ref.3). The fact, that those methods can lead to very accurate results for the energy, implies a relative unimportance of the short-range behavior in r12 of the trial functions for getting the high-precision results in the calculation of the BO ground state energy. It also implies that these methods are doomed to a low accuracy of the expectation values for which a short-range behavior in r12 of the wave function is important. This situation can be easily explored taking the H-atom as an example and applying a superposition of the Gaussian functions as a trial function7.
8. Turbiner A. V.: Pis’ma Zh. 1983, 38, 510.
9. Turbiner A. V., Guevara N. L., Lopez Vieyra J. C.: (physics/ 0606083).
10. Turbiner A. V., Guevara N. L.: Phys. Rev. A 2006, 74, 063419; (astro-th/0610928). <https://doi.org/10.1103/PhysRevA.74.063419>
11. Turbiner A. V.: Astrophys. Space Sci., in press.
12a. Turbiner A. V.: Usp. Fiz. Nauk 1984, 144, 35. <https://doi.org/10.3367/UFNr.0144.198409b.0035>
12b. Turbiner A. V.: Sov. Phys. Usp. 1984, 27, 668 (English Translation). <https://doi.org/10.1070/PU1984v027n09ABEH004155>
13. Levine I. N.: Quantum Chemistry, 5th ed. Prentice-Hall, Upper Saddle River, NJ 07458, 2000.
14. It is worth noting that the question about a convergence of the Moeller–Plesset perturbation theory is not settled yet.
15a. Turbiner A. V.: Yad. Fiz. 1987, 46, 204.
15b. Turbiner A. V.: Sov. J. Nucl. Phys. 1987, 46, 125 (English Translation).
16. It is worth noting that this procedure for a selection of the trial function was applied successfully to a study of one-electron molecular systems in a magnetic field leading to the highly accurate results. Many of these results are the most accurate at the moment18.
17. Due to a freedom in normalization of the wave function one of the coeficients A can be kept fixed; thus, in present calculation we put A1 = 1.
18. Turbiner A. V., López Vieyra J. C.: Phys. Rep. 2006, 424, 309. <https://doi.org/10.1016/j.physrep.2005.11.002>
19. Kolos W., Roothan C. C. J.: Rev. Mod. Phys. 1960, 32, 219. <https://doi.org/10.1103/RevModPhys.32.219>
20. Detmer T., Schmelcher P., Diakonos F. K., Cederbaum L. S.: Phys. Rev. A 1997, 56, 1825. <https://doi.org/10.1103/PhysRevA.56.1825>
21. Van Duijneveldt F. B.: Gaussian Basis Sets for the Atoms H-Ne for Use in Molecular Calculations. IBM Technical Report RJ 945, 1971.
22. Leininger M. L., Allen W. D., Schaefer III H. F., Sherrill C. D.: J. Chem. Phys. 2000, 112, 9213. <https://doi.org/10.1063/1.481764>