Collect. Czech. Chem. Commun. 2007, 72, 1472-1498
https://doi.org/10.1135/cccc20071472

Pentenolide Analogues of Antifungal Butenolides: Strategies Towards 3,6-Disubstituted Pyranones and Unexpected Loss of Biological Effect

Ivan Šnajdr, Jan Pavlík, Radan Schiller, Jiří Kuneš and Milan Pour*

Centre For New Antivirals and Antineoplastics, Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, CZ-500 05 Hradec Králové, Czech Republic

References

1. Collett L. A., Davies-Coleman M. T., Rivett D. E. A.: Fortschr. Chem. Org. 1998, 75, 181.
2. Lewy D. S., Gauss C.-M., Soenen D. R., Boger D. L.: Curr. Med. Chem. 2002, 9, 2005. <https://doi.org/10.2174/0929867023368809>
3a. Hosoe T., Nozawa K., Lumley T. C., Currah R. S., Fukushima K., Takizawa K., Miyaji M., Kawai K.: Chem. Pharm. Bull. 1999, 47, 1591. <https://doi.org/10.1248/cpb.47.1591>
3b. Barrero A. F., Arseniyadis S., Moral J., Herrador M., Valdivia M., Jimenez D.: J. Org. Chem. 2002, 67, 2501. <https://doi.org/10.1021/jo0161882>
4. Brady S. F., Clardy J.: J. Nat. Prod. 2000, 63, 1447. <https://doi.org/10.1021/np990568p>
5a. Pour M., Špulák M., Buchta V., Kubanová P., Vopršalová M., Wsól V., Fáková H., Koudelka P., Pourová H., Schiller R.: J. Med. Chem. 2001, 44, 2701. <https://doi.org/10.1021/jm010155x>
5b. Buchta V., Pour M., Kubanová P., Silva L., Votruba I., Vopršálová M., Schiller R., Fáková H., Špulák M.: Antimicrob. Agents Chemother. 2004, 48, 873. <https://doi.org/10.1128/AAC.48.3.873-878.2004>
6. Pour M., Špulák M., Balšánek V., Kuneš J., Kubanová P., Buchta V.: Bioorg. Med. Chem. 2003, 11, 2843. <https://doi.org/10.1016/S0968-0896(03)00220-7>
7a. Ramana C. V., Srinivas B., Puranik V. G., Gurjar M. K.: J. Org. Chem. 2005, 70, 8216. <https://doi.org/10.1021/jo050972v>
7b. Marshall J. A., Adams N. D.: J. Org. Chem. 1999, 64, 5201. <https://doi.org/10.1021/jo9823083>
7c. Demont E., Eatherton A., Frampton C. S., Kahn I., Redshaw S.: Synlett 2004, 684. <https://doi.org/10.1055/s-2004-815439>
7d. Kobayashi M., Wang W., Tsutsui Y., Sugimoto M., Murakami N.: Tetrahedron Lett. 1998, 39, 8291. <https://doi.org/10.1016/S0040-4039(98)01809-7>
8. Solladié G., Gressot-Kempf L.: Tetrahedron: Asymmetry 1996, 7, 2371. <https://doi.org/10.1016/0957-4166(96)00292-3>
9. Scott M. S., Luckhurst C. A., Dixon D.: J. Org. Lett. 2005, 7, 5813. <https://doi.org/10.1021/ol052333c>
10a. Dias L. C., Meira P. R. R.: Tetrahedron Lett. 2002, 43, 8883. <https://doi.org/10.1016/S0040-4039(02)02200-1>
10b. Marshall J. A., Bourbeau M. P.: J. Org. Chem. 2002, 67, 2751. <https://doi.org/10.1021/jo016025d>
10c. Dounay A. B., Forsyth C. J.: Org. Lett. 2001, 3, 975.
10d. Hansen T. M., Florence G. J., Lugo-Mas P., Chen J., Abrams J. N., Forsyth C. J.: Tetrahedron Lett. 2003, 44, 57. <https://doi.org/10.1016/S0040-4039(02)02489-9>
10e. Chandrasekhar M., Chandra K. L., Singh V. K.: J. Org. Chem. 2003, 68, 4039. <https://doi.org/10.1021/jo0269058>
11. Boucard V., Broustal G., Campagne J. M.: Eur. J. Org. Chem. 2007, 225. <https://doi.org/10.1002/ejoc.200600570>
12. Pour M., Špulák M., Balšánek V., Kuneš J., Buchta V., Waisser K.: Bioorg. Med. Chem. Lett. 2000, 10, 1893. <https://doi.org/10.1016/S0960-894X(00)00376-0>
13. Hetet C., David M., Carreaux F., Carboni B., Sauleau A.: Tetrahedron Lett. 1997, 38, 5153. <https://doi.org/10.1016/S0040-4039(97)01098-8>
14a. Blaser F., Deschenaux P., Kallimopoulos T., Jacot-Guillamord A.: Helv. Chim. Acta 1991, 74, 141. <https://doi.org/10.1002/hlca.19910740116>
14b. Coutrot P., Grison C., Bowent C.: Tetrahedron Lett. 1994, 35, 8381. <https://doi.org/10.1016/S0040-4039(00)74412-1>
14c. Coutrot P., Grison C., Bowent C.: J. Organomet. Chem. 1999, 586, 208. <https://doi.org/10.1016/S0022-328X(99)00269-7>
15a. Hoye T. R., Humpal P. E., Jimbez J. I., Mayer M. J., Tan L., Ye Z.: Tetrahedron Lett. 1994, 35, 7517. <https://doi.org/10.1016/S0040-4039(00)78332-8>
15b. Sugihara T., Copéret Ch., Owczarczyk Z., Harring L. S., Negishi E.: J. Am. Chem. Soc. 1994, 116, 7923. <https://doi.org/10.1021/ja00096a070>
16. Schiller R., Pour M., Fáková H., Kuneš J., Císařová I.: J. Org. Chem. 2004, 69, 6761. <https://doi.org/10.1021/jo049114+>
17. Fáková H., Pour M., Kuneš J., Šenel P.: Tetrahedron Lett. 2005, 46, 8137. <https://doi.org/10.1016/j.tetlet.2005.09.128>
18a. Yoneda E., Zhang S.-W., Zhou D.-Y., Onitsuka K., Takahashi S.: J. Org. Chem. 2003, 68, 8571. <https://doi.org/10.1021/jo0350615>
18b. Yoneda E., Kaneko T., Zhang S.-W., Onitsuka K., Takahashi S.: Org. Lett. 2000, 2, 441. <https://doi.org/10.1021/ol990377d>
19a. Copéret Ch., Ma S., Sugihara T., Negishi E.: Tetrahedron 1996, 52, 11529. <https://doi.org/10.1016/0040-4020(96)00640-0>
19b. Copéret Ch., Sugihara T., Negishi E.: Tetrahedron Lett. 1995, 36, 1771. <https://doi.org/10.1016/0040-4039(95)00120-2>
20. Granito C., Troisi L., Ronzini L.: Heterocycles 2004, 63, 1027.
21. Yamaguchi M., Hirao I.: Tetrahedron Lett. 1983, 24, 391. <https://doi.org/10.1016/S0040-4039(00)81416-1>
22a. Marshall J., Shearer B., Crooks S.: J. Org. Chem. 1987, 52, 1236. <https://doi.org/10.1021/jo00383a012>
22b. Denmark S. E., Jones T. K.: J. Org. Chem. 1982, 47, 4595. <https://doi.org/10.1021/jo00144a044>
23. Ma S., Liu F., Negishi E.: Tetrahedron Lett. 1997, 38, 3829. <https://doi.org/10.1016/S0040-4039(97)00764-8>
24. Wolfe J. P., Buchwald S. L.: Angew. Chem., Int. Ed. Engl. 1999, 38, 2413. <https://doi.org/10.1002/(SICI)1521-3773(19990816)38:16<2413::AID-ANIE2413>3.0.CO;2-H>
25. Hocek M., Holý A., Votruba I., Dvořáková H.: J. Med. Chem. 2000, 43, 1817. <https://doi.org/10.1021/jm991167+>
26. Vale-Silva L. A., Buchta V., Vokurková D., Pour M.: Bioorg. Med. Chem. Lett. 2006, 16, 2492. <https://doi.org/10.1016/j.bmcl.2006.01.094>