Collect. Czech. Chem. Commun.
2007, 72, 1375-1382
https://doi.org/10.1135/cccc20071375
Synthesis and Characterization of Spherical Hollow Assembly Composed of Cu Nanoparticles
Ming Yanga,* and Xiao Yangb
a Department of Chemistry and Environmental Engineering, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan, 430023, P.R. China
b College of Science and Engineering, Hainan University, Haikou, 570228, P.R. China
References
1. Adv. Mater. 1998, 10, 1045.
< S. H., Xia Y.: https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<1045::AID-ADMA1045>3.0.CO;2-2>
2. Chem. Eur. J. 2000, 6, 413.
< F.: https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9>
3. Science 2000, 287, 1463.
< L., Sui M. L., Lu K.: https://doi.org/10.1126/science.287.5457.1463>
4. Appl. Phys. Lett. 2001, 78, 718.
< J. A., Choi S. U. S., Li S., Yu W., Thompson L. J.: https://doi.org/10.1063/1.1341218>
5. J. Mol. Catal. 1988, 48, 231.
< E. R., Savinova E. N., Parmon V. N.: https://doi.org/10.1016/0304-5102(88)85008-9>
6. J. Phys. Chem. B 2003, 107, 12416.
< R., El-Sayed M. A.: https://doi.org/10.1021/jp035647v>
7. Appl. Catal., A 2006, 297, 40.
< C. H., Wang A. Q., Zheng M. Y., Wang X. D., Zhang T.: https://doi.org/10.1016/j.apcata.2005.08.035>
8. Polym. J. 2006, 38, 178.
< R. H., Fang L., Li X. P., Xi Y. X., Zhang S. F., Sun P.: https://doi.org/10.1295/polymj.38.178>
9. Nanostruct. Mater. 1998, 10, 1135.
< S. S., Patil S. F., Iyer V., Mahumuni S.: https://doi.org/10.1016/S0965-9773(98)00153-6>
10. J. Am. Chem. Soc. 1993, 115, 3887.
< I., Pileni M. P.: https://doi.org/10.1021/ja00063a006>
11. Adv. Mater. 1999, 11, 1358.
< M. P., Ninham B. W., Gulik-Krzywicki T., Tanori J., Lisiecki I., Filankembo A.: https://doi.org/10.1002/(SICI)1521-4095(199911)11:16<1358::AID-ADMA1358>3.0.CO;2-#>
12. J. Colloid Interface Sci. 1997, 186, 498.
< L., Ma J., Shen J.: https://doi.org/10.1006/jcis.1996.4647>
13. J. Am. Chem. Soc. 2001, 123, 7797.
< K. J., Doty R. C., Johnston K. P., Korgel B. A.: https://doi.org/10.1021/ja010824w>
14. Chem. Mater. 2001, 13, 4130.
< H., Hunt F., Wai C. M.: https://doi.org/10.1021/cm010030g>
15. Chem. Mater. 1998, 10, 1446.
< N. A., Raj C. P., Gedanken A.: https://doi.org/10.1021/cm9708269>
16. J. Mater. Chem. 2001, 11, 1209.
< R. V., Mastai Y., Diamant Y., Gedanken A.: https://doi.org/10.1039/b005769j>
17. J. Phys. Chem. 1999, 103, 6851.
< M. S., Yang Y. S., Lee Y. P., Lee H. F., Yeh Y. H., Yeh C. S.: https://doi.org/10.1021/jp984163+>
18. Chem. Mater. 2002, 14, 1183.
< G., Bernini M., Bertozzi S., Pitzalis E., Salvadori P., Coluccia S., Martra G.: https://doi.org/10.1021/cm011199x>
19. Adv. Mater. 2003, 15, 303.
< Z., Bando Y.: https://doi.org/10.1002/adma.200390073>
20. Langmuir 1997, 13, 172.
< H. H., Yan F. Q., Kek Y. M., Chew C. H., Xu G. Q., Ji W., Oh P. S., Tang S. H.: https://doi.org/10.1021/la9605495>
21. J. Phys. Chem. 1996, 100, 4160.
< I., Billoudet F., Pileni M. P.: https://doi.org/10.1021/jp9523837>
22. Surf. Sci. 2004, 566–568, 414.
< I. M., Shevchenko G. P.: https://doi.org/10.1016/j.susc.2004.06.122>
23. J. Inorg. Biochem. 2007, 101, 686.
< S. H., Chen L. J., Guo Y. C., Shi J. J.: https://doi.org/10.1016/j.jinorgbio.2006.11.018>
24. Mater. Chem. Phys. 2007, 104, 158.
Y. W., Yang Y. X., Yuan S. L., Ding L. H., Chen G. R.:
25. Colloids Surf., A 2005, 256, 191.
< R., Coradin T., Vaulay M. J., Mangeney C., Livage J., Fiévet F.: https://doi.org/10.1016/j.colsurfa.2005.01.018>
26. Colloids Surf., A 2006, 284, 364.
< Y. H., Lee D. K., Jo B. G., Jeong J. H., Kang Y. S.: https://doi.org/10.1016/j.colsurfa.2005.10.067>
27. J. Phys. Chem. 1996, 100, 4160.
< I., Billoudet F., Pileni M. P.: https://doi.org/10.1021/jp9523837>
28. J. Cryst. Growth 2003, 256, 134.
< M., Zhu J. J.: https://doi.org/10.1016/S0022-0248(03)01298-3>
29. Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D.: Handbook of X-ray Photoelectron Spectroscopy, p. 87. Perkin Elmer Corporation, Physical Electronics Division, Minnesota, USA 1992.